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Best simultaneous diophantine approximations
of some cubic algebraic numbers

par NICOLAS CHEVALLIER

RÉSUMÉ. Soit 03B1 un nombre algébrique réel de degré 3 dont les
conjugués ne sont pas réels. Il existe une unité 03B6 de l’anneau
des entiers de K = Q(03B1) pour laquelle il est possible de décrire
l’ensemble de tous les vecteurs meilleurs approximations de 03B8 =

(03B6,03B62). 

ABSTRACT. Let 03B1 be a real algebraic number of degree 3 over Q
whose conjugates are not real. There exists an unit ( of the ring
of integer of K = Q(03B1) for which it is possible to describe the set
of all best approximation vectors of 03B8 = (03B6, 03B62).

1. Introduction

In his first paper ([10]) on best simultaneous diophantine approximations
J. C. Lagarias gives an interesting result which, he said, is in essence a

corollary of W. W. Adams’ results ([1] and [2]):
Let [1,0:1,0:2] be a Q basis to a non-totally real cubic field. Then the best
simultaneous approximations of a = (al, a2) (see definition below) with
respect to a given norm N are a subset of

where the qr¿,) satisfy a third-order linear recurrence (with constant coeffi-
cients) .

for a finite set of initial conditions qp~~, qi~~, q2~~, for 1  j  p. The

fundamental of K = Q(ai , a2) satisfies

Now consider the particular case X = ((, 2) E ]R2 where ( is the unique
real root of ~3 + ~2 + ~ - 1 = 0. The vector X can be seen as a two-
dimensional golden number. N. Chekhova, P. Hubert and A. Messaoudi
were able to precise Lagarias’ result (cf. [7]):
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There exists a euclidean norm on such that all best diophantine ap-
proximations of X are given by the ‘Tribondcci’ sequence (qn)neN defined
by

The aim of this work is to make precise Lagarias’ result in the same way
as N. Chekhova, P. Hubert and A. Messaoudi.

Definition ([10],[8]). Let N be a norm on and 0 E R2.
1) A strictly positive integer q is a best approximation (denominator) of 0
with respect to N if

2) An element P of Z8 + Z2 is a best approximation vector of 0 with
respect to N if q is a best approximations of 0 and if

We will call M(0) the set of all best approximation vectors of 0.

Using Dirichlet’s theorem it is easy to show that there exists a positive
constant C depending only on the norm N, such that for all 0 in R2 and
all best approximation vectors P of 0

If [1, a1, a2J is a qbasis of a real cubic field then 0 = (al, a2) is badly
approximable (cf. [6] p. 79):
there exists c &#x3E; 0 such that for all best approxirrcation vectors q8 - P of 8

Let 0 E and A = OZ+Z2. Endow A with its natural Z-basis 0, el =
(1, 0), e2 = (0,1). For a matrix B E M3 (Z) and X = xoO + xlel +x2ez E A,
the action BX = Y of B on X is naturally defined: the coordinates vector
of Y is the matrix product of B by the coordinates vector of X.
We shall prove the following results.

Proposition 1. Let aI, a2 E N* - Suppose P(x) = x3 + a2x2 + aIx - 1 has
a unique real root ~. Call 0 = (C’ (2) and B the matrix
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There exist a norm N on and a finite number of best approximation
vectors Xi = qi8 - Pi, i = 1, ... , rra such that

is a finite set.

Proposition 2. Suppose a is a real algebraic number of degree 3 over Q
whose conjugates are not real. There exist a unit C of the ring of integer of
K = Q(a), two positive integers al and a2 and euclidean norm on JR2 such
that the set of best approximation vectors of 0 = (~, (2), is

where

The proof of Proposition 1 is quite different from Chechkova, Hubert and
Messaoudi’s one. It is based on two simple facts:
Let aI, a2 E N*. Suppose P(x) = x3 ~- a2x2 + aix - 1 has a unique real
root (and call 0 = ~~, ~2~.
1) Following G. Rauzy ([14]) we construct a euclidean norm N on JR2 and
a linear contracting similarity F on JR2 (i.e. N(F(x)) for all x in
}R2 where the ratio r E]O, 1[) which is one to one on A = 7GB + Z2.
2) Since al,a2 &#x3E; 0 the map F preserves the positive cone A+ = N0 - N2.
We deduce from these observations that F send best approximation vectors
of 0 to best approximation vectors of 0 (see lemma 2) and proposition 1
follow easily. Our method cannot be extended to higher dimension, because
for F to be a similarity, it is necessary that P has one dominant root, all
other roots being of the same modulus, and H. Minkowski proved that this
can only occur for polynomials of degree 2 or 3 ([12]).
The sequence of best approximation vectors of 0 E JR2 may be seen as a
two-dimensional continued fraction ’algorithm’. In this case Proposition 1
means that the ’development’ of ~~, (2) becomes periodic when C is the
unique real root of the polynomial x3+a2x2+alx-1 with al, a2 E N. This
may be compared to the following results about Jacobi-Perron’s algorithm:
(0. Perron [13]) Let ( be the root of P E Z[X], degP = 3. If the develop-
met of ((, (2) by Jacobi-Perron’s algorithm becomes periodic and if this
development gives good approximations, i. e.

where (Pl,n,P2,n, are given by Jacobi-Perron’s algorithm, then the

conjugates of ( are complex (see [4J p. 7).
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(P. Bachman [1]) Lest d" where d is a cube-free integer greater than 1.
If the development by Jacobi- Perron’s algorithm of ((, (2) turns out to be
periodic it gives good approximations as above.

(E. Dubois - R. Paysant [9]) If K is a cubic extension of Q then there
exist K, linearly independent with 1, such that the development
of ({3I, /32) by Jacobi-Perron’s algorithm is periodic.

O. Perron (see [13] Theorem VII or Brentjes [5] Theorem 3.4.) also gives
some numbers with a purely periodic development of length 1.
We should also note that A. J. Brentjes gives a two-dimensional continued
fraction algorithm which finds all best approximations of a certain kind
and he uses it to find the coordinates of the fundamental unit in a basis of
the ring of integers of a non-totally real cubic field. (see Brentjes’ book on
multi-dimensional continued fraction algorithms [5] section 5F).
Finally, we shall give a proof of Chechkova, Hubert and Messaoudi’s result
using proposition 1 together with the set of best approximations corre-
sponding to the equation ~3 + 2~2 + ~ = 1.

2. The Rauzy norm

Fix ai, a2 E and suppose that the polynomial P(x) _ -x 3 + aix2 +
a2X + 1 has a unique real root. Endow R3 with its standard basis el, e2, e3.
Let M be the matrix

The characteristic polynomial of M is -x3 + + a2X + 1, the unique
positive eigenvalue of M is A = ~ and O = ((,(2,(3) is the eigenvector
associated with A. Let l be the linear form on R3 with coefficients al, a2,
1; we have l(O) = l(e3) = 1. Put 0(X) = o M map kerl
into itself and 1I80 C ker A o M. The eigenvalues of the restriction of A o M
to ker l, are Ai and A2 = Ai , the two other eigenvalues of M. In fact, if Z
is an eigenvector of M associated to Ai then 0(Z) E kerl and

Call p the projection R3 onto p is one to one from ker l onto I1~2 , call i
its inverse map and consider the linear map

The linear maps F and A o M are conjugate, therefore the eigenvalues of
F are Ai and A2-

Lemma 3. F is one to one of A = Z8 + Z2 on itself, where 0 = (~, (2).
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Proof. Since i(0) = O - e3 we have

Similarly and

Since F maps A into itself, it remains to show that F is one to one. Call
B the matrix of F with respect to the basis (0, el, e2 ) . We have

so that

and

LJ

Call A+ = {q9 - P : q E N and P E Since al and a2 are positive
we have:

Corollary 4. F(A+) C A+.

Since A2 = A, there exists a euclidean norm N on 1I82 such that F is
a linear similar map for this norm (i.e. = rN(x) for all x in
I(R2, where r in R+ is call the ratio of F). The ratio of F is r = I À 11 [ =

1 = q%  1. Now let us determine the matrix M of the bilinear form

(x, y) associated with N, this is necessary for Proposition 2 but not for
Proposition 1. M is unique up to a multiplicative constant. Since the ratio
of F is yZ,

and computing F(el) and F(e2), we find that (el, el), (el, e2) and (e2, e2)
satisfy

Since 1 = ai ( + a2~2 + (3, we find
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3. Best diophantine approximations
We suppose JR2 is endowed with the norm N defined in the previous

section.

Notations. 1) po = Jae2 : IX21) ~ 1 )) .

2) For x E I(8 we denote the nearest integer to x by I(x) (it is well-defined
for all irrational number x).
We will often use the simple fact:

Let X = (x1,x2) E ]R2 and P = E Z2. If N(X - P)  °Jpo then
pi = P2 = ~(~2) and P is the nearest point of 7G2 to X (for the norm
N).
We will say that two best approximation vectors q19 - Pi and q28 - P2

are consecutive if ql and q2 are consecutive best approximations.

Lemma 5. 1) If q6 - P is a best approximation vector such that N(qB -
P)  then q’8 - P’ = F(q6 - P) is a best approximation vector of B.
2) Let ql and q2 be two consecutive best approximations and

two corresponding best approzimation vectors. 
and best approximation vector then F(q1B - Pl) and

P2) are consecutive best approximation vectors.

Proof. 1) Let Y = k’B - R’ e AB{(0, 0)} be such that N(Y)  P’).
We have to prove that &#x3E; q’ or that k’8-R’ = -3:(q’8-P’). By Lemma 1,
we have Y = F(X) with X = E A. Since F is a similar map, we have

N(X)  N(q9 - P) and by the definition of best approximations Ikl &#x3E; q.
If k  0 we can replace Y by -Y so we can suppose that k &#x3E; q. Since

N(X)   R = (7(~)~(~)) and P = (I~9~)~I~9’~2))~
The nearest integer function z - is nondecreasing so 7(A?() &#x3E; I(q()
and 7(A~) ~ 7(g~). This shows that (k8 - R) - (q8 - P) E A+ and by
corollary 4, F(k9 - R) - P) E A+. Therefore k’ &#x3E; q’. If k’ = q’, we
have R’ = (1(k’~),I~k~C2)) _ (l(q’(),I(q’(2)) = PB
2) Put F(qi8 - Pi) = ki8 - Rï, i = 1, 2. Suppose kB - R is a best approxi-
mation vector with kl  k  k2. We want to prove that kB - R = k28 - R2.
Put F-1 (k8 - R) = q9 - P. On the one hand, since F is similar, we have

 so q &#x3E; ql. Furthermore ql and q2 are consecutive
best approximations, so q &#x3E; q2.
On the other hand, k18 - Ri = Pl) is a best approximation
with Ri) = Pi)  N(q18 - Pi), then q2 and

 3Po. Therefore N(k29-R2) 
!po. It follows that
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We have I(k()  I(k2~) for k  k2. Using the matrix B we see that
R = (q, .) and R2 = (q2, .). This shows q  q2 and q = q2, which implies

The increasing sequence of all best approximations of 0 will be denoted

Proposition 6. are (consecutive) best
approximation vectors such that and

Proof. Put Vn - qn8 - Pn. The previous lemma shows that 
k = 0, ... , m, are consecutive best approximation vectors. By induction on
j &#x3E; 0, we see that = k = o, ... , m are consecutive
best approximation vectors and 0

Proof of Proposition 1. Since P) = 0, there
exists an integer no such that for each n &#x3E; no, Pn)  By
Lemma 4, 1), is a best approximation vector and Proposi-
tion 1 follows of Proposition 6.

4. Proof of Proposition 2

Lemma 7. Let P E Q be an irreducible polynomial of degree 3 with a
unique real root a and K = §fa) . There exist infinitely many A E K such
that

Proof. Since P has a unique real root, Dirichlet’s theorem shows that the
group of unit of the integral ring of K contains an abelian free sub-group
G of rank 1. 1 be in G. We can suppose ~ &#x3E; 1 and the norm

NK(Ç) = 1. The conjugates of ~ are not real because those of a are not.
Call -y and y these conjugates. We have = 1 and  1 since the
norm of 6 is 1 and 6 &#x3E; 1. We will show that A = 6m satisfy i), ii) and iii)
for infinitely many m E N‘ .

The minimal polynomial of A is Q(x) = x3 - alx2 - a2x - 1 with

Since ~ &#x3E; 1 &#x3E; 1,1, al is positive for m large and a2 will be positive if the
argument of 7 is well chosen. Call a the argument of -y and p = 1 its
modulus.
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First Q.
There exist infinitely many such that ma ~ [2;, ~] mod27r. Call I
the set of such m. For m E I

on.

then

Moreover,

then

Therefore the conditions i), ii) and iii) are satisfied for large m in I.
Second = 9 E Q.
Since 1 fj. 1R, q &#x3E; 2. First note that 4 for, if q = 4, we have

so a, = -a2 = p = 1 and q = ~i. This is impossible because the degree
of the minimal polynomial of -y is 3. So q E {3} U {5,6,... }. If q = 3,5
or 6, it is easy to see that there exist infinitely many m E N such that
ma E  4" - 2" ] ] mod 21r while a similar conclusion is obvious if &#x3E; 7.5 7 7 5 q -

Now, we can conclude as in the previous case for 47r 21 &#x3E; 1 D

From now on, al, a2 &#x3E; 1 are two integers such that P(x) _ -1 + a¡x +
a2x2 + x3 has a unique real root (. We use the notations of Sections 2 and
3, the norm N as defined in Section 2 and po as defined at the beginning
of Section 3.

Lemma 8.

Proof. By definition

We have
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then

similarly

and since 1,

Lemma 9. Suppose al and a2 satisfy condition iii) of Lemma 7. For al

sufficiently large, N(B)  and 8 is a best approximation vector of 8 .

We have

whereby

and so

for c1 sufficiently large. Now if .
- I

Lemma

Proof.
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Lemma 11. Suppose a, and a2 satisfy condition iii) of Lemma 7. For a,
sufficiently large, 0 and al 0 - el are the first two best approximation vectors.

Proof. Since a1B - el = F(B), the only thing to prove is

If then by definition of po

where P = (pl, p2). Furthermore, if q  al and if al is large, then q~  1
and q~2  1. Therefore ,

End of proof of Proposition 2. By Lemma 7 there exists a unit A E Q(a)
which satisfies conditions i), ii) and iii) with al large. ( = ) is also unit.
By Lemma 9, 0 = ~~, ~2~ is a best approximation vector and by Lemma 11,
F(0) = a10 - ei is the next best approximation vector. Since N(a1B-el) 

 2 po, by Proposition 6 we have M (0) = {F" (B) : ~ 
5. The equations 1 = x3 + a2X 2+ x

The polynomial P(x) = x3 + a2x2 + x -1 has only one real root if a2 = 1
or 2.

5.1. a2 = 1. Call ( the positive root of 1 = x3 +x 2 + ~ and 0 = ~~, ~2~ . N.
Chekhova, P. Hubert, A. Messaoudi have proved that M (0) = 
n If we want to recover this result with Proposition 6, we just have
to show:

el is a best approximation vector,
ii) el) is the next best approximation vector,

First note that -F(8’: el) = 29 - el - e2 and N(F(6 - el)) _ (N(0 - el) 
N(8 - el), so if i) is true then 2 is the next best approximation and if iii)
is also true, then 2B - el - e2 is a best approximation vector. Let us now
prove iii) and afterward i):
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and the last inequality is obvious. Since
Then the point P = Z2 which is the nearest to

is one of We have

and

so P must be el and this completes the proof of i).
5.2. a2 = 2. Call C the positive root of 1 = x3 + 2x2 + x and 0 = ((, ~2~ .
The set of all best approximations is given by two initial points

where Xl = 9 and X2 = 28 - el. To prove this result, by Proposition 6, we
have to check the following properties:
i) 9 - el is the best approximation vector,
ii) 28 - el is the next best approximation vector,

This requires some tedious calculations very similar to the case a2 = 1.

References

[1] W. W. ADAMS, Simultaneous diophantine Approximations and Cubic Irrationals. Pacific J.
Math. 30 (1969), 1-14.

[2] W. W. ADAMS, Simultaneous Asymptotic diophantine Approximations to a Basis of a Real
Cubic Field. J. Number Theory 1 (1969), 179-194.

[3] P. BACHMANN, Zur Theory von Jacobi’s Kettenbruch-Algorithmen, J. Reine Angew. Math.
75 (1873), 25-34.



414

[4] L. BERNSTEIN, The Jacobi-Perron algorithm-Its theory and applications, Lectures Notes in
Mathematics 207, Springer-Verlag, 1971.

[5] A. J. BRENTJES, Multi-dimensional continued fraction algorithms, Mathematics Center
Tracts 155, Amsterdam, 1982.

[6] J. W. S. CASSELS, An introduction to diophantine approximation. Cambridge University
Press, 1965.

[7] N. CHEKHOVA, P. HUBERT, A. MESSAOUDI, Propriété combinatoires, ergodiques et arithméti-
ques de la substitution de Tribonacci. J. Théor. Nombres Bordeaux 13 (2001), 371-394.

[8] N. CHEVALLIER, Meilleures approximations d’un élément du tore T2 et géométrie de cet
élément. Acta Arith. 78 (1996), 19-35.

[9] E. DUBOIS, R. PAYSANT-LE Roux, Algorithme de Jacobi-Perron dans les extensions cu-
biques. C. R. Acad. Sci. Paris Sér. A 280 (1975), 183-186.

[10] J. C. LAGARIAS, Some New results in simultaneous diophantine approximation. In Proc. of
Queen’s Number Theory Conference 1979 (P. Ribenboim, Ed.), Queen’s Papers in Pure and
Applied Math. No. 54 (1980), 453-574.

[11] J. C. LAGARIAS, Best simultaneous diophantine approximation I. Growth rates of best ap-
proximations denominators. Trans. Amer. Math. Soc. 272 (1982), 545-554.

[12] H. MINKOWSKI, Über periodish Approximationen Algebraischer Zalhen. Acta Math. 26
(1902), 333-351.

[13] O. PERRON, Grundlagen für eine Theorie des Jacobischen Kettenalgorithmus. Math. Ann.
64 (1907), 1-76.

[14] G. RAUZY, Nombre algébrique et substitution. Bull. Soc. Math. France 110 (1982), 147-178.

Nicolas CHEVALLIER
University de Haute-Alsace

4, rue des fr~res Lumière
68093 Mulhouse Cedex, France
E-mail : n.chevallier0uha.fr


