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Best simultaneous diophantine approximations
of some cubic algebraic numbers

par NicoLaAs CHEVALLIER

RESUME. Soit a un nombre algébrique réel de degré 3 dont les
conjugués ne sont pas réels. Il existe une unité ¢ de I’anneau
des entiers de K = a) pour laquelle il est possible de décrire
I’ensemble de tous les vecteurs meilleurs approximations de 6 =

(¢, ¢%).

ABSTRACT. Let a be a real algebraic number of degree 3 over Q
whose conjugates are not real. There exists an unit ¢ of the ring
of integer of K = Q(a) for which it is possible to describe the set
of all best approximation vectors of 8 = (, ¢?).

1. Introduction

In his first paper ([10]) on best simultaneous diophantine approximations
J. C. Lagarias gives an interesting result which, he said, is in essence a
corollary of W. W. Adams’ results ([1] and [2]):
Let (1,01, 03] be a Q basis to a non-totally real cubic field. Then the best
simultaneous approzimations of a = (oy,02) (see definition below) with
respect to a given norm N are a subset of

{¢) :m>0,1<j <p}

where the qg)satisfy a third-order linear recurrence (with constant coeffi-
cients).

dm+3 + 62¢mi2 + 61gm+1 £ gm =0
for a finite set of initial conditions q((,j) , qgj), qgj), for 1 < j < p. The
fundamental unit ¢ of K = Q(a;,az) satisfies

€ —axt? —a16+1=0.

Now consider the particular case X = (¢,¢2?) € R? where ¢ is the unique
real root of (3 + (2 + ¢ —1 = 0. The vector X can be seen as a two-
dimensional golden number. N. Chekhova, P. Hubert and A. Messaoudi
were able to precise Lagarias’ result (cf. [7]):

Manuscrit regu le 10 juillet 2000.
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There exists a euclidean norm on R? such that all best diophantine ap-
prozimations of X are given by the ‘Tribonacci’ sequence (gn)neN defined
by

w0=19=2 9=4, gnt3 = 42 + Gnt1 + qn-

The aim of this work is to make precise Lagarias’ result in the same way
as N. Chekhova, P. Hubert and A. Messaoudi.

Definition ([10],[8]). Let N be a norm on R? and € R?.
1) A strictly positive integer q is a best approzimation (denominator) of 6
with respect to N if

Vk € {L,...,q =1}, min N(g6 - P) < min N(k¢ - Q)

2) An element g6 — P of Z8 + Z2 is a best approzimation vector of 6 with
respect to N if q is a best approzimation of 0 and if

N(gf0 - P) = Cgféiznzl\f(q(f—Q)

We will call M(0) the set of all best approzimation vectors of 6.

Using Dirichlet’s theorem it is easy to show that there exists a positive
constant C depending only on the norm N, such that for all § in R? and
all best approximation vectors g — P of 0

c
N(¢6 - P) < ;s

If [1,01,a2] is a Q-basis of a real cubic field then 8 = (a1, as) is badly

approximable (cf. [6] p. 79):
there exists ¢ > 0 such that for all best approzimation vectors qf — P of 6
c

N(¢6 - P) > pEvER

Let € R2\Q? and A = §Z+Z2% Endow A with its natural Z-basis 6, e; =
(1,0), e2 = (0,1). For a matrix B € M3(Z) and X = z¢o0+x1e; +z2e2 € A,
the action BX =Y of B on X is naturally defined: the coordinates vector

of Y is the matrix product of B by the coordinates vector of X.
We shall prove the following results.

Proposition 1. Let a;, a; € N*. Suppose P(z) = 23 + azx? +ayz — 1 has
a unique real root (. Call 0 = (C ,CZ) and B the matriz

al —ag -1
B=| -1 0 0 .
0 1 0
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There ezist a norm N on R? and a finite number of best approzimation
vectors X; = q;60 — P;, i =1,...,m such that

M@O\{B"X;:neNandi=1,...,m}
is a finite set.

Proposition 2. Suppose a is a real algebraic number of degree 3 over Q
whose conjugates are not real. There exist a unit { of the ring of integer of
K = Q(a), two positive integers a; and az and euclidean norm on R? such
that the set of best approzimation vectors of 6 = ((,(?), is

M (0) = {B"0:n e N}
where
al —ag -1
B=| -1 0 0
0 1 0

The proof of Proposition 1 is quite different from Chechkova, Hubert and
Messaoudi’s one. It is based on two simple facts:
Let a1, az € N*. Suppose P(z) = 2% + a222 + a1z — 1 has a unique real
root ¢ and call 6 = (¢,¢?).
1) Following G. Rauzy ([14]) we construct a euclidean norm N on R? and
a linear contracting similarity F on R? (i.e. N(F(zx)) = rN(z) for all z in
R? where the ratio r €]0, 1[) which is one to one on A = Z8 + Z2.
2) Since aj,az > 0 the map F preserves the positive cone At = N9 — N2,
We deduce from these observations that F' send best approximation vectors
of @ to best approximation vectors of 6 (see lemma 2) and proposition 1
follow easily. Our method cannot be extended to higher dimension, because
for F to be a similarity, it is necessary that P has one dominant root, all
other roots being of the same modulus, and H. Minkowski proved that this
can only occur for polynomials of degree 2 or 3 ([12]).
The sequence of best approximation vectors of # € R?> may be seen as a
two-dimensional continued fraction ’algorithm’. In this case Proposition 1
means that the ‘development’ of ({,(?) becomes periodic when ¢ is the
unique real root of the polynomial z3 + a2z2 + a1z — 1 with a1, a2 € N. This
may be compared to the following results about Jacobi-Perron’s algorithm:

(O. Perron [13]) Let ¢ be the root of P € Z[X], deg P = 3. If the develop-
ment of (¢,¢?) by Jacobi-Perron’s algorithm becomes periodic and if this
development gives good approzimations, i.e.

C
max(l‘]n( - Pl,nl, IQn<2 "p2,n|) < 2
dn

where (P1n,P2,n,qn)neN are given by Jacobi-Perron’s algorithm, then the
conjugates of ¢ are complez (see [4] p.7).
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(P. Bachman [1]) Let ¢ = ds where d is a cube-free integer greater than 1.
If the development by Jacobi- Perron’s algorithm of ((,(?) turns out to be
periodic it gives good approzimations as above.
(E. Dubois - R. Paysant [9]) If K is a cubic extension of Q then there
exist f1, P2 in K, linearly independent with 1, such that the development
of (B1,B2) by Jacobi-Perron’s algorithm is periodic.

O. Perron (see [13] Theorem VII or Brentjes [5] Theorem 3.4.) also gives
some numbers with a purely periodic development of length 1.
We should also note that A. J. Brentjes gives a two-dimensional continued
fraction algorithm which finds all best approximations of a certain kind
and he uses it to find the coordinates of the fundamental unit in a basis of
the ring of integers of a non-totally real cubic field.(see Brentjes’ book on
multi-dimensional continued fraction algorithms [5] section 5F).
Finally, we shall give a proof of Chechkova, Hubert and Messaoudi’s result
using proposition 1 together with the set of best approximations corre-
sponding to the equation ¢3 +2¢2 + ¢ = 1.

2. The Rauzy norm

Fix a;, a; € N* and suppose that the polynomial P(z) = —z3 + a;22 +
asz + 1 has a unique real root. Endow R? with its standard basis ey, ey, e3.

Let M be the matrix
a; az 1
M={1 0 0.
0 1 O

The characteristic polynomial of M is —z3 + a122 + agz + 1, the unique
positive eigenvalue of M is A = % and © = (¢,¢2,¢3) is the eigenvector
associated with A. Let [ be the linear form on R® with coefficients a;, as,
1; we have {(©) = l(e3) = 1. Put A(X) = X - (X)©. Ao M map kerl
into itself and RO C ker Ao M. The eigenvalues of the restriction of Ao M
to kerl, are A\; and Ay = A1, the two other eigenvalues of M. In fact, if Z
is an eigenvector of M associated to A; then A(Z) € kerl and

AoMoA(Z)=AMZ —(Z)XO) = M A(2).

Call p the projection R? onto R2. p is one to one from ker! onto R2, call 4
its inverse map and consider the linear map

F:XeR 5 poAoMoi(X)c R

The linear maps F' and A o M are conjugate, therefore the eigenvalues of
F are /\1 and /\2.

Lemma 3. F is one to one of A = Z6 + Z? on itself, where 8 = ((,¢?).
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Proof. Since i(0) = © — e3 we have
F(0) =poA(XAO —e1) =p(l(e1)® — e1) = a10 — e; € A.
Similarly i(ex) = ex — l(ex)es, k = 1,2, then Xy = M oi(ex) € Z3 and
F(ex) = p(Xx — I(Xk)®) = p(Xi) — I(Xk)6 € A.

Since F maps A into itself, it remains to show that F is one to one. Call
B the matrix of F' with respect to the basis (0, e;,e2). We have

X1 = M(ex—l(er)es) = arer + e — le1)er = ey,
Xa = M(ez —l(e2)es) = azer +e3 — l(e2)er = €3
so that
al —aQ -1
B=| -1 0 0
0 1 0
and
det B = —1.

a

Call At = {gf — P : q € Nand P € N?}. Since a; and a are positive
we have:

Corollary 4. F(A*) C A*.

Since Ay = \; there exists a euclidean norm N on R? such that F is
a linear similar map for this norm (i.e. N(F(z)) = rN(z) for all z in
R?, where r in RY is call the ratio of F). The ratio of F is r = || =
—lﬁ = +/C < 1. Now let us determine the matrix M of the bilinear form

(z,y) associated with N, this is necessary for Proposition 2 but not for
Proposition 1. M is unique up to a multiplicative constant. Since the ratio

of Fis+/,

(F(e1),Fle2)) = (fer,e2),
(F(e2),Fle2)) = (lez,e2),

and computing F(e;) and F(e2), we find that (e1,e;1), (e1,ez) and (es, e3)
satisfy

{ az{er, er) + (=2 + 2a2¢?)(e1, e2) + (—¢ + a2¢3)(e2, €2) = 0
Cle1,e1) +2¢%(e1, e2) + (3 — 1){ez,e2) = 0.

Since 1 = a1¢ + ag¢? + ¢3, we find
(e1,e1) = 2(a1 + (), (e1,€2) = a2 — ¢, (e2,e2) = 2.
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3. Best diophantine approximations

We suppose R? is endowed with the norm N defined in the previous
section.

Notations. 1) po = d(0,{(z1,z2) € R? : sup(|z1], |z2|) > 1}).

2) For £ € R we denote the nearest integer to z by I(z) (it is well-defined
for all irrational number z).

We will often use the simple fact:
Let X = (z1,22) € R? and P = (p1,p3) € Z2 If N(X — P) < 1py then
p1 = I(z1), p2 = I(z2) and P is the nearest point of Z2 to X (for the norm
N).

We will say that two best approximation vectors 10 — P, and ¢26 — P
are consecutive if q; and g2 are consecutive best approximations.

Lemma 5. 1) If g0 — P is a best approzimation vector such that N(q8 —
P) < %po then ¢'60 — P' = F(qf — P) is a best approzimation vector of 6.
2) Let q; and g2 be two consecutive best approzimations of @ and ¢10— P, and
q20 — P be two corresponding best approzimation vectors. If N(g20— P,) <
3po and if F(q10 — P,) is a best approzimation vector then F (g0 — P,) and
F(g20 — P,) are consecutive best approrimation vectors.

Proof. 1) Let Y = k'0 — R’ € A\{(0,0)} be such that N(Y') < N(¢'6 — P’).
We have to prove that |k'| > ¢’ or that k' —R' = +(¢’0— P'). By Lemma 1,
we have Y = F(X) with X = kf—R € A. Since F is a similar map, we have
N(X) < N(g6 — P) and by the definition of best approximations |k| > gq.
If K < 0 we can replace Y by —Y so we can suppose that k¥ > ¢. Since
N(X) < N(g6 - P) < 3p0, R = (I(k¢),I(k¢?)) and P = (I(g¢), 1(¢?))-
The nearest integer function x — I(z) is nondecreasing so I(k¢) > I(q¢)
and I(k¢?) > I(g¢?). This shows that (k@ — R) — (¢80 — P) € A* and by
corollary 4, F(k@ — R) — F(qg0 — P) € A*. Therefore k' > ¢'. If k' = ¢/, we
have R' = (I(K'¢), I(K'¢?) = (I(¢'¢), I(d'¢?)) = P

2) Put F(q;60 — P;) =k;60 — R;, : = 1,2. Suppose k6 — R is a best approxi-
mation vector with k; < k < k9. We want to prove that k6 — R = k260 — R».
Put F~1(k§ — R) = gf — P. On the one hand, since F is similar, we have
N(g0—P) < N(q:0—P,), so q¢ > q;. Furthermore ¢; and g, are consecutive
best approximations, so ¢ > g¢o.

On the other hand, k160 — Ry = F(q:10 — P,) is a best approximation
with N(k10 — R;) = N(F(q10 — P) < N(¢:10 — P,), then k; > g2 and
N(k16—P;) < N(g20-P,) < po. Therefore N (k20— Rz) and N (kf—R) <
%po. It follows that

R = (I(k¢), I(k¢?)), Ry = (I(k2(), I(k2C?)).
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We have I(k¢) < I(k2{) for k < ky. Using the matrix B we see that
R = (q,.) and Ry = (g2,.). This shows ¢ < ¢ and q = g2, which implies
q0 — P =q20 — P> and k0 — R = k30 — Rs. O

The increasing sequence of all best approximations of @ will be denoted
by (gn)neN (g0 = 1).

Proposition 6. If g5,0 — Py, ..., qng+m0 — Png+m are (consecutive) best
approzimation vectors such that F(gn,0 — Pny) = Gno+m0 — Png+m and
N(gno+10 — Png+1) < 1po, then for all j >0 and all k €0,...,m -1,

Gno+im+k0 = Protjm+k = F?(Gno+k0 — Png+k)-

Proof. Put V,, = ¢,0 — P,. The previous lemma shows that F(V;,+),
k =0,...,m, are consecutive best approximation vectors. By induction on
j > 0, we see that F/(Vy,4k) = Vao+jm+k, kK = 0,...,m are consecutive
best approximation vectors and F(Vno+jm) = Vg4 (j+1)m- O

Proof of Proposition 1. Since lim,_,, minpcz2 N(gn60 — P) = 0, there
exists an integer ng such that for each n > ng, N(g,0 — P,) < %po. By
Lemma 4, 1), F(gn,8 — Py,) is a best approximation vector and Proposi-
tion 1 follows of Proposition 6.

4. Proof of Proposition 2

Lemma 7. Let P € Q be an irreducible polynomial of degree 3 with a
unique real root a and K = (a). There ezist infinitely many A € K such
that

i)yrA>1

ii) A is a root of Q(z) = 2% — a1z
iii) a1, a2 € N and 3a; > a%.

2 _apz—1

Proof. Since P has a unique real root, Dirichlet’s theorem shows that the
group of unit of the integral ring of K contains an abelian free sub-group
G of rank 1. Let £ # 1 be in G. We can suppose £ > 1 and the norm
Nk (€) = 1. The conjugates of ¢ are not real because those of a are not.
Call v and 7 these conjugates. We have {47 = 1 and |y| < 1 since the
norm of { is 1 and ¢ > 1. We will show that A = ™ satisfy i), ii) and iii)
for infinitely many m € N.

The minimal polynomial of X is Q(z) = 2% — a1z
ar = ai(m) = {M+y"+F™
ay = az(m) = —[g"(™+7") + |y

Since £ > 1 > ||, a; is positive for m large and a; will be positive if the
argument of 7 is well chosen. Call o the argument of v and p = \/LE its
modulus.

2 _ gy — 1 with
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First case. - ¢ Q.
There exist infinitely many m € N such that ma € [%F, 453] mod 2w. Call T
the set of such m. Form € I

aj(m) = "+ fim cos ma
2
m ™ 2 1
az(m) = -2£72 cosma— 5-%‘- > —2£7 cos _3£ - {T"_'
then
m—-)gor,nmel a (m) = m—}%:lor,nmel a2(m) = +oo.
Moreover,
m 4r 1
< =2fz2 — -
az(m) < —2¢7 cos s~
then
liminf %M 5 _ 1 1

m—o0, mel a%(m) ~ 4cos? %’ 3

Therefore the conditions i), ii) and iii) are satisfied for large m in I.

o
Second case. 3= = 5 €Q

Since v ¢ R, ¢ > 2. First note that ¢ # 4 for, if ¢ = 4, we have

0 = Re(¥¥—a1?—axy—1) = ap?-1

0 Im(¥® —a17? —agy-1) = p(p* +a)
80 a; = —az = p = 1 and y = +i. This is impossible because the degree
of the minimal polynomial of 7y is 3. So ¢ € {3} U {5,6,...}. If ¢ = 3,5
or 6, it is easy to see that there exist infinitely many m € N such that

ma € [%" - 27”, 4?”] mod 27 while a similar conclusion is obvious if ¢ > 7.
Now, we can conclude as in the previous case for 55’5 - 27" > 3. O
From now on, aj,az > 1 are two integers such that P(z) = —1 + a1z +

asz? + z3 has a unique real root . We use the notations of Sections 2 and
3, the norm N as defined in Section 2 and pg as defined at the beginning
of Section 3.

Lemma 8.
4ay — a% + 2a9¢ + 3¢2
2(a1 +¢?)

P

v

Proof. By definition
P2 > min(min N?(e; + zep), min N%(ez + ze1)).
z€R z€R

We have
N2(e; + zez) = (e, e1) + 2x(eq, e2) + z%(e2, €3)
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then

2 2 _ _ 2
rmneinlth2(61 + zez) = (e1,e1) — t:;,e:z) _ e +¢ )2 (a2 - Q)
similarly
(e1,€2)? _ 4(a1 +¢?) — (a2 —¢)?
(e1,e1) 2(a1 +¢?) ’

mjnN2(e2 + zey) = (eg,e2) —
z€R

and since a; > 1,
4ay — a% + 2a5¢ + 3¢2
2(a; +¢?)

Po 2
a

Lemma 9. Suppose ay and ay satisfy condition iii) of Lemma 7. For ay
sufficiently large, N(0) < %po and 0 is a best approzimation vector of 0 .

Proof. Put ¢(a1,as2) 4“—“%‘1‘—3:'{;(;& We have
Jim Clon,an) =0

whereby
1
alh_r,n ¢(alaa2) 2 )
3a;>a2
and so

N(6) = N*(Flea)) = 2 < 36(01,02) < 763
for a; sufficiently large. Now if P € Z2\{(0,0)}, then N(§ — P) > N(P) —
N(8) > 3p0. a
Lemma 10. Ifq € {0,...,a1 — 1} then N(q0 —e;) > N(9).
Proof.
N?(qf — e1) > N?(6)
o (¢? —1)(0,0) — 296, e1) + (e1,e1) >0
& (42 — 1)(F(e2), F(e2)) — 2q[2(a1 + ¢*)¢ + (a2 — ()¢?] + 2(a1 +¢?) > 0
& 2(¢° - 1)¢ — 2g(@{ + 1) +2(a1 +¢*) >0
Sa—q+(F-1-amg)(+¢*>0
& (a1 -q)(al+a® + )+ (@ -1 -ag) +¢* >0
& ¢ +a? — 2010 — 1 + az(a1 — q)¢ + (a1 — ¢)¢* > 0.
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Lemma 11. Suppose a and ay satisfy condition i) of Lemma 7. For a;
sufficiently large, 0 and a10—e; are the first two best approzimation vectors.

Proof. Since a10 — e; = F(6), the only thing to prove is

inf  inf N(g0 — P) > N(6).
g€ 2m—1) plngz (g ) > N(6)

If N(g6 — P) < 1po, then by definition of po

lg¢ —m| <

DN = DN =

lg¢® —po| <

where P = (p;1,p2). Furthermore, if ¢ < a; and if a; is large, then ¢ <1
and ¢¢? < 1. Therefore ,

inf N(q6 - P
Anf, (g )

inf(N(g6), N (g0 — e1))
inf(qN (6), N(q6 — e1)) > N(6)
for g € {2,...,a; — 1}. ]

v

End of proof of Proposition 2. By Lemma 7 there exists a unit A € Q(a)
which satisfies conditions i), ii) and iii) with a; large. { = ;1\- is also unit.
By Lemma 9, 6 = ({,(?) is a best approximation vector and by Lemma 11,
F(0) = a10 — e, is the next best approximation vector. Since N(a;10—e;) <
N(6) < 4po, by Proposition 6 we have M(0) = {F™(8) : n € N}.

5. The equations 1 = z3 + axz? + =

The polynomial P(z) = 23+ asz? + z — 1 has only one real root if a; = 1
or 2.

5.1. a2 = 1. Call ¢ the positive root of 1 = z3 + 2%+ z and 6 = (¢,¢?). N.
Chekhova, P. Hubert, A. Messaoudi have proved that M(0) = {F"(0—e;) :
n € N}. If we want to recover this result with Proposition 6, we just have
to show:

i) @ — e; is a best approximation vector,

ii) F'(@ — e;) is the next best approximation vector,

iii) N(F(0 — e1)) < $po.

First note that F(f —e;) =20 —e; — ez and N(F (0 —e1)) =(N(@ —e;) <
N(6 — e1), so if i) is true then 2 is the next best approximation and if iii)
is also true, then 26 — e; — ey is a best approximation vector. Let us now
prove iii) and afterward i):

3+2¢ +3¢2

N2(F(9 —e)) = N2(F3(e2)) = 263 < 8(1 + ¢2)

1
< ZP%
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for
3+ 2¢ + 3¢2

2° < Zaro
& 3+20+3¢2-16¢3(1+¢%) >0
e 3¢+C+3)+2¢+3¢2-16¢31+¢H >0
& 54+6¢-13¢2-16¢*>0
& 11-8¢C+5¢2-16¢3>0
& 3+16¢-5(2>0

and the last inequality is obvious. Since ¢ > 1,2¢3 < 1p2 = N2(0—¢;) =
2¢% < 1p% < pg. Then the point P = (p1,p;) € Z* which is the nearest to
0, is one of (0,0), e, e or e; + e2. We have
N2%(0 —e;) = (N?(8) < N?()
and
N0 —e3) = N%(0) — 2(0,e2) +2=2¢ —2¢(1 = ¢) — 4¢% +2
=2(1-¢})>2*=N(#-e),
N%(0 —e; —e3) = N2(0 — e1) — 2(0 — e1,€2) + 2
=2¢2 - 2¢(1 -¢) — 4¢% +2(e1, e2) +2
=¢?-2(1-0) -4 +2(1 - +2=4-4(> 2,
so P must be e; and this completes the proof of i).

5.2. ap = 2. Call ¢ the positive root of 1 = 23 + 222 + z and 6 = (¢, {?).
The set of all best approximations is given by two initial points

M(6) = {B"X; :n€N, i=1,2}

where X; = 6 and X2 = 26 —e;. To prove this result, by Proposition 6, we
have to check the following properties:

i) 6 — e; is the best approximation vector,

ii) 26 — e; is the next best approximation vector,

iii) F(0 —e;) =30 —e1, F(20 —e1) =40 — 2e; — eg,

iv) N(30 — e1) < 3po-

This requires some tedious calculations very similar to the case a; = 1.
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