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Digital expansion of exponential séquences

par MICHAEL FUCHS

RÉSUMÉ. On s’intéresse au développement en base q des N pre-
miers termes de la suite exponentielle an. En utilisant un résultat
dû à Kiss et Tichy, nous montrons que le nombre moyen d’occur-
rences d’un bloc de chiffres donné est égal asymptotiquement à
sa valeur supposée. Sous une hypothèse plus forte nous montrons
un résultat similaire en ne considérant seulement les (log N) 3/2-~,
avec ~ &#x3E; 0, premiers termes de la suite an.

ABSTRACT. We consider the q-axy digital expansion of the first
N terms of an exponential sequence an. Using a result due to Kiss
and Tichy [8], we prove that the average number of occurrences
of an arbitrary digital block in the last c log N digits is asymptot-
ically equal to the expected value. Under stronger assumptions
we get a similar result for the first (log N)3/2-~ digits, where ~ is
a positive constant. In both methods, we use estimations of ex-
ponential sums and the concept of discrepancy of real sequences
modulo 1 plays an important role.

1. Introduction

In this paper, we write N, Z, R for the sets of positive integers, integers,
and real numbers. With P, we denote the set of primes and for an element
of P we usually write p. For a real number x, we use the standard notations
e(x) = ~x~ for the fractional part of x, and Ilxll for the distance from
x to the nearest integer.

Let q &#x3E; 2 be an integer. We consider for n E N the q-ary digital expansion

We are going to introduce further notations, which we use throughout this
paper. We start with

which is the number of changes of digits (or the number of blocks) in the dig-
ital expansion of n. Furthermore, we write for arbitrary digits eo, ei, " - , es
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with s &#x3E; 0, 0  e~ ?20131,0~~5, not all digits equal to 0 and integers

for the number of occurrences of the digital block eo in the digital
expansion of n between a and b. (If a  s then we start with i = s and if
we omit a and b then we assume i &#x3E; s.) If we use the word digital block,
we always assume that at least one digit is not equal to zero. Finally, we
use the well known notation of

for the sum-of-digits function.
In this paper, we consider the q-ary expansion of an exponential sequence

an, where a &#x3E; 2 is an integer. In a recent work Blecksmith, Filaseta, and
Nicol [5] proved the following result:

Later Barat, Tichy, and Tijdeman [3] gave a quantitative version of the
above result, by applying Baker’s theorem on linear forms in logarithm
(see for instance [1] or [2]). They proved the following result:

Theorem 1. Let a and q be integers both &#x3E; 2. Assume that loga q is
irrational. Then there exist eflectively computable constants CO and no,
where co is a positive real number and no is an integer., such that

for 7~0’

Clearly, as a consequence of this result, we obtain the same lower bound
for the sum-of-digits function S,(an) and for the mean value of the sum-of-
digits function of an exponential sequence.

Corollary 1. Let q, a be as in Theorem 1. Then we have, as ~V 2013~ OOY

One aim of this paper is to improve this lower bound. More generally
we are interested in the behaviour of the following mean value

where eo is an arbitrary digital block. Of course, results about the
behaviour of (5) imply results about other interesting mean values, e.g., the



479

mean value of the sum-of-digits function and the mean value of the number
of changes of digits.

First, we consider only the last digits in the digital expansion of the
exponential sequence. By using a result due to Kiss and Tichy [8], we can
prove that the average number of occurrences of an arbitrary digital block
is, except of a bounded error term, asymptotically equal to the expected
value. In detail the following theorem holds:

Theorem 2. Let a, q be integer both &#x3E; 2 such that log, q is irrational. We
consider a digital block es es _ 1 - - - eo with s &#x3E; 0, 0  ei :5 q - 1, 0  i  s .

There exists a positive real constant ~, such that we have, as N ---~ oo,

with

As an easy consequence, we can remove the log log N factor in the lower
bound of Corollary 1.

Corollary 2. Let a, q and eses-i ... eo be as in Theorem 2. Then te have,
as ~V 2013~ oo,

and consequently

and

Next, we consider the first digits. Here it seems to be more convenient
to use the stronger assumption (a, q) = 1, instead of loga q E Then,
we are able to prove a result similar to Theorem 2 for the first log ~V digits,
but such a result yields no improvement of the lower bounds of the mean
values considered in Corollary 2. Therefore, we don’t state it, but we are
going to state a stronger result, which follows similarly but under stronger
assumptions, namely that q is a prime:

Theorem 3. Let a &#x3E; 2 be an integer and p E P a prime with (a, p) - 1.
We consider a digital block eo with s &#x3E; 0 and 0  p -
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1, 0  i  s. Furthermore let e, q be arbitrary positive real numbers and
A, (N), A2 (N) positive integer-valued functions with

Then we have for a positive real number A, as N --~ oc,

Again we have the following simple consequence:

Corollary 3. Let a, p, and eo be as in Theorem 3 and E an arbi-

trary positive real number. Then zue have, as N --~ oo,

and consequently

and

The paper is organized as follows: in Section 2, we prove Theorem 2 and
in Section 3 Theorem 3. In the final section, we make some remarks.

2. Proof of the Theorem 2

In this section, we use the following notation: with a and q we denote two
integers both &#x3E; 2. We define a := 109a q and assume that a is irrational.

First, we need the well-known concept of discrepancy (see [6]):
Definition 1. Let be a sequences of real numbers and N &#x3E; 1. Then
the N-th discrepancy of the sequence xn is defined by

where is the characteristic function of the set [a, b).
Our first Lemma is a famous inequality for the discrepancy, which is due

to Erdôs and Turan [7].
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Lemma 1. Let be a sequence of real numbers and N &#x3E; 1. Then
we have

for any positive integer K. The constant c is absolute.

Next, we need a result, which is a special case of a more general result
due to Kiss and Tichy [8]. The proof follows by using the Erdôs-Turàn
inequality together with Baker’s theorem on linear forms in logarithm.
Lemma 2. There exists a positive real constant y such that

The last ingredient is a very simple fact, but it is one of the key ideas of
the proofs of Theorem 2 and Theorem 3.

Lemma 3. Let n E N and we consider the q-ary digital expansion (1) of
n. Let eo be a digital block and put m = E’=o eiqi. Then for all
k &#x3E; s we have

Now, we are able to prove Theorem 2.

Proof of Theorem 2. Let _  â , l  N’ be a positive integer, where q
is the constant in Lemma 3, and put m = eiqi. We consider 

_

It is easy to see that

where K = K - c log l - s + 1 with a suitable constant c and I is either
or [0, 1[, where1 ’ 2 ’ 2 1 ’ ’

We use now the definition of discrepancy (6) and it follows
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Applying Lemma 3 yields

Next, we consider

and it is an easy calculation that

and

Therefore, we have

In the sum on the left hand side of (9), we count all tuples (n, k),1 
n  N, s  k  K, such that the following condition holds

where 1 is an integer with 1  1  [Nt]. If we fix n, then, the above
inequality implies

and Theorem 2 follows from (9). n 

’

3. Proof of Theorem 3

In this section a &#x3E; 2 is an integer and p E P denotes a prime with
(a, p) = 1.

Let k be a positive integer. With T(Pk), we denote the multiplicative
order of a mod p~‘. For T(P) we write just T. If p is odd then, we denote
by /3 the smallest number such that 1. If p = 2 then, we set 8 = 1
if a = 1 mod 4 and 6 = 2 if a - 3 mod 4. In this case # is the smallest
number such that 2,8la6 - 1. This number /3 has the following property:
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Lemma 4. Let a, p and (3 be as above. For all integers n we have

Proof. See [9]. 0
For the proof of Theorem 3, we need estimations for special exponen-

tial sums. The first Lemma is a special case of a result, which is due to
Niederreiter [13].
Lemma 5. Let k &#x3E; 2, h be integers and (h, p) = 1. Assume that r(pk) =

Then it follows

The next result is due to Korobov (see [10] or [11]).
Lemma 6. Let m &#x3E; 2, h be integers with (a, m) = 1 and (h, m) = 1. Let
T be the multiplicative order of a mod m. Then me have for 1  N  T

We will apply this Lemma for the special case m = p k. Notice that this
lemma provides only a good estimation when N is not too small. We also
need good estimations for very small N. The best known result in this
direction is again due to Korobov (see [10] or [11]).
Lemma 7. Let k &#x3E; 1, h be integers and (h, p) = 1. Then for all integers
N with N  r(pk) we have

where q &#x3E; 0 is an absolute constant and the zmplied constant depends only
on a and p.

If n is a positive integer then we write in the following for the p-ary
digital expansion of a’~:

We prove now the following Lemma:

Lemma 8. Let eses-l ... eo be a digital block to base p. Let f,11 &#x3E; 0 be

given and N, k be positive integers such that
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We consider

Then we have for an arbitrary positive real number A, as 

and this holds uniformly for k with (11).

Proof. Put m = EL We use (8) and obtain

With the definition of discrepancy (6) it follows

where the implied O-constant is 1. In order to get the desired result, we
have to estimate the discrepancy on the right hand side. Therefore, we use
once more inequality (7).

Let 1  6  2 be a real number. We distinguish between two cases.
First we consider k with

Let À &#x3E; 0 be a real number and h  10gÀ N be a positive integer. First, we
observe for large enough N

where ~3 is the integer introduced in the beginning of the section. We use
Lemma 5 and it follows

if N is large enough. Because of (14) we can estimate the exponential sum
in inequality (7) with help of Lemma 8 for h  10gÀ N. It follows

where c depends only on a, p and y is absolute. With (13) we can estimate
the right hand side of the above inequality

where y is a suitable constant.
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Now we can finish the proof of the first case. We consider

and choose K = [loga N] . Then, with the estimation of the exponential
sum, we have

where the implied constant does not depend on k with (13). By (12) this
completes the proof of the first case.

Next, we consider

Let À and h be as in the first case. With the notations of Lemma 5 and
because of (15) we have for large enough N

It follows from Lemma 6 that the exponential sum in the inequality (7) is
0, if we sum over a period. Hence, we can use the estimation of Lemma 7:

Using (15) it is an easy calculation to show that

where ô is a suitable constant. Notice that the implied constant does not
depend on k.
The rest of the proof of the second case is similar to the first case. If we

combine the two cases, then we get the claimed result. 0
Theorem 3 is an easy consequence of this Lemma:

Proof of Theorem 3. Of course the following equality is true

where Ak is as in Lemma 9.
We use now Lemma 9 and the claimed result follows. D
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4. Remarks

Remark 1. In Theorem 2, we consider the last digits of the digital expan-
sion of the exponential sequence. Notice that the leading term logq N
is exactly the expected term, if one assumes that the digits are equidis-
tributed.
A similar result should hold for more digits. However, with the method

of proof, it doesn’t seem to be possible to extend the range of digits in order
to prove a stronger result.

Remark 2. In Theorem 3, we are interested in the first digits of the
digital expansion of the exponential sequence. The result is of the same
type as Theorem 2, especially we have the expected order of magnitude.
Truncation of the first digits is necessary, because the multiplicative order
of a mod p~ can be very small, for small k and therefore, it is possible that
not all digits occur at the k - th position. However, the lower bound for the
digit range could be reduced to c logp logp N + d, where c and d are suitable
constants, but then A in the error term would not be arbitrary any more.

If we assume that p is not necessary a prime, then the method of proof
could be used to get a result for the first log N digits of the digital expansion.
In this situation only the simpler estimation of Lemma 7 for the involved
exponential sum of the form

is needed.
These exponential sums have been very frequently studied, because they

are important in the theory of generating pseudo-random numbers with the
linear congruential generator (see for instance [12] or [13]).
The proof of Theorem 3 heavily depends on estimations of these expo-

nential sums, especially one needs estimations for very short intervals. Of
course, better estimations would yield a better result, however, to obtain
good estimations for very short intervals seems to be a hard problem.

Remark 3. In the proof of Theorem 1, all digits of the digital expansions
are considered. One can adopt this idea to get a lower bound for the
number of digits, which are not zero and therefore a lower bound for the
mean value of the sum-of-digits function. However, we have not been able
to obtain a lower bound better than the one in Theorem 1 with such ideas.
It seems that for better results by taking all digits into account, a totally
new method is needed.

We end with a conjecture, which seems to be far away from what can be
obtained with the methods introduced in this paper.
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Conjecture 1. Let a, q &#x3E; 2 be integers and assume that log~ q is irrational.
Let eo be a digital block. Then we have

As a consequence one would have N as lower bound for the mean values
in Corollary 2 and Corollary 3.
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