## Jaroslav HančL

## Linear independence of continued fractions

Journal de Théorie des Nombres de Bordeaux, tome 14, nº 2 (2002), p. 489-495

[http://www.numdam.org/item?id=JTNB_2002_14_2_489_0](http://www.numdam.org/item?id=JTNB_2002_14_2_489_0)
© Université Bordeaux 1, 2002, tous droits réservés.
L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numdam

Article numérisé dans le cadre du programme

# Linear independence of continued fractions 

par Jaroslav HANČL

RÉsumé. Nous donnons un critère d'indépendance linéaire sur le corps des rationnels qui s'applique à une famille donnée de nombres réels dont les développements en fractions continues satisfont certaines conditions.

Abstract. The main result of this paper is a criterion for linear independence of continued fractions over the rational numbers. The proof is based on their special properties.

## 1. Introduction

Forty years ago Davenport and Roth in [2] proved that the continued fraction $\left[a_{1}, a_{2}, \ldots\right]$, where $a_{1}, a_{2}, \ldots$ are positive integers satisfying

$$
\limsup _{n \rightarrow \infty}\left(\left(\log \log a_{n}\right) \frac{\sqrt{\log n}}{n}\right)=\infty
$$

is a transcendental number. The generalization of transcendence is algebraic independence and there are several results concerning the algebraic independence of continued fractions. See, for instance, Bundschuh [1] or Hančl [5]. On the other hand it is a well known fact that if a positive real number has a finite continued fractional expansion then it is a rational number, and if not it is an irrational number. Irrationality is a special case of linear independence and this paper deals with such a theory. By the way, as to linear independence of series, one can find the criterion in [4], for instance.

## 2. Linear independence

Theorem 2.1. Let $\epsilon>1$ be a real number, $K$ be a natural number and $\left\{a_{j, n}\right\}_{n=1}^{\infty}(j=1,2, \ldots, K)$ be $K$ sequences of positive integers such that

$$
\begin{equation*}
a_{j+1, n}>a_{j, n}\left(1+\frac{\epsilon}{n \log n}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1, n+1}>a_{K, n}^{K-1}\left(1+\frac{1}{n}\right) \tag{2}
\end{equation*}
$$

Manuscrit reçu le 6 novembre 2000.
Supported by the grant 201/01/0471 of the Czech Grant Agency.
hold for every sufficiently large positive integer $n$ and $j=1,2,3, \ldots, K-1$. Then the continued fractions $\alpha_{j}=\left[a_{j, 1}, a_{j, 2}, \ldots\right](j=1,2, \ldots, K)$ and the number 1 are linearly independent over the rational numbers.

Lemma 2.1. Let $a_{j, n}, j=1,2, \ldots, K, n=1,2, .$. and $K>2$ satisfy all conditions stated in Theorem 2.1. Then

$$
\prod_{n=1}^{\infty}\left(1+\frac{1}{a_{j, n}}\right)=C_{j}<\infty
$$

Proof of Lemma 2.1. From (1) and (2) we obtain

$$
\begin{aligned}
a_{j, n} & \geq a_{1, n}\left(1+\frac{\epsilon}{n \log n}\right)^{j-1}>a_{K, n-1}^{K-1}\left(1+\frac{1}{n-1}\right)\left(1+\frac{\epsilon}{n \log n}\right)^{j-1} \\
& >a_{j, n-1}^{K-1}\left(1+\frac{\epsilon}{(n-1) \log (n-1)}\right)^{(K-1)(K-j)}\left(1+\frac{1}{n-1}\right)\left(1+\frac{\epsilon}{n \log n}\right)^{j-1} \\
& \geq a_{j, n-1}\left(1+\frac{1}{n-1}\right)\left(1+\frac{\epsilon}{n \log n}\right)>\left(1+\frac{1}{n}\right)\left(1+\frac{\epsilon}{n \log n}\right) a_{j, n-1}
\end{aligned}
$$

for every sufficiently large positive integer $n$ and $j=1,2, \ldots, K$. By mathematical induction we get

$$
a_{j, n} \geq Y \prod_{j=2}^{n}\left(1+\frac{1}{j}\right)\left(1+\frac{\epsilon}{j \log j}\right)
$$

for every $n=2,3, \ldots$ and $j=1,2, \ldots, K$, where $Y$ is a positive real constant which does not depend on $n$. It follows that

$$
\prod_{n=2}^{\infty}\left(1+\frac{1}{a_{j, n}}\right) \leq \prod_{n=2}^{\infty}\left(1+\frac{1}{Y \prod_{i=2}^{n}\left(1+\frac{1}{i}\right)\left(1+\frac{\epsilon}{i \log i}\right)}\right)=C_{j}<\infty
$$

because the series

$$
\sum_{n=2}^{\infty} \frac{1}{\prod_{j=2}^{n}\left(1+\frac{1}{j}\right)\left(1+\frac{\epsilon}{j \log j}\right)}
$$

is convergent. (To prove this last fact one can use Bertrand's criterion for convergent series, for instance. See [3] for example.)

Proof of Theorem 2.1. If $K=1$, then $\alpha_{1}$ has an infinite continued fraction expansion. In this case $\alpha_{1}$ is irrational and Theorem 2.1 holds. Now we will consider the case in which $K \geq 2$ and $n$ is a sufficiently large positive integer. Let us assume that there exist $K+1$ integers $A_{1}, A_{2}, \ldots, A_{K}, A_{K+1}$ (not all of which equal zero) such that

$$
\begin{equation*}
A_{K+1}=\sum_{j=1}^{K} A_{j} \alpha_{j} \tag{3}
\end{equation*}
$$

We can write each continued fraction $\alpha_{j}(j=1,2, \ldots, K)$ in the form

$$
\begin{equation*}
\alpha_{j}=\frac{p_{j, n}}{q_{j, n}}+R_{j, n} \tag{4}
\end{equation*}
$$

where $\frac{p_{j, n}}{q_{j, n}}=\left[a_{j, 1}, a_{j, 2}, \ldots, a_{j, n}\right]$ is the $n$-th partial fraction of $\alpha_{j}$ and $R_{j, n}$ is the remainder. For $R_{j, n}$ we have the estimation

$$
\begin{equation*}
\left|R_{j, n}\right|=\left|\alpha_{j}-\frac{p_{j, n}}{q_{j, n}}\right|<\frac{1}{a_{j, n+1} q_{j, n}^{2}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{j, n}\right|>\frac{c}{a_{j, n+1} q_{j, n}^{2}} \tag{6}
\end{equation*}
$$

where $c>0$ is a constant which depends only on $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}$. (For the proof see, for instance, [6].) Substituting (4) into (3) we obtain

$$
A_{K+1}=\sum_{j=1}^{K} A_{j}\left(\frac{p_{j, n}}{q_{j, n}}+R_{j, n}\right)
$$

Multiplying both sides of the last equation by $\prod_{j=1}^{K} q_{j, n}$ we obtain

$$
A_{K+1} \prod_{j=1}^{K} q_{j, n}=\prod_{j=1}^{K} q_{j, n} \sum_{j=1}^{K} A_{j}\left(\frac{p_{j, n}}{q_{j, n}}+R_{j, n}\right)
$$

This implies

$$
\begin{equation*}
M_{n}=\left(A_{K+1}-\sum_{j=1}^{K} A_{j} \frac{p_{j, n}}{q_{j, n}}\right) \prod_{j=1}^{K} q_{j, n}=\prod_{j=1}^{K} q_{j, n} \sum_{j=1}^{K} A_{j} R_{j, n} \tag{7}
\end{equation*}
$$

where $M_{n}$ is an integer.
First we will prove that $\left|M_{n}\right|>0$. Let $P$ be the least positive integer such that $A_{P} \neq 0$. (Such a $P$ must exist because not every $A_{j}$ is equal to zero.) Then we have

$$
\begin{aligned}
\left|M_{n}\right| & =\left|\prod_{j=1}^{K} q_{j, n} \sum_{j=1}^{K} A_{j} R_{j, n}\right|=\left|\prod_{j=1}^{K} q_{j, n} \sum_{j=P}^{K} A_{j} R_{j, n}\right| \\
& \geq \prod_{j=1}^{K} q_{j, n}\left(\left|A_{P}\right|\left|R_{P, n}\right|-\sum_{j=P+1}^{K}\left|A_{j} \| R_{j, n}\right|\right)
\end{aligned}
$$

This, (5) and (6) imply

$$
\left|M_{n}\right| \geq \prod_{j=1}^{K} q_{j, n}\left(\left|A_{P}\right| \frac{c}{a_{P, n+1} q_{P, n}^{2}}-\sum_{j=P+1}^{K}\left|A_{j}\right| \frac{1}{a_{j, n+1} q_{j, n}^{2}}\right)
$$

From this last inequality and (1) we obtain

$$
\begin{align*}
\left|M_{n}\right| & \geq \prod_{j=1}^{K} q_{j, n}\left(\left|A_{P}\right| \frac{c}{a_{P, n+1} q_{P, n}^{2}}-\frac{\sum_{j=P+1}^{K}\left|A_{j}\right|}{a_{P+1, n+1} q_{P+1, n}^{2}}\right)  \tag{8}\\
& \geq \frac{\prod_{j=1}^{K} q_{j, n}\left|A_{P}\right| c}{a_{P+1, n+1} q_{P+1, n}^{2}}\left(\frac{a_{P+1, n+1} q_{P+1, n}^{2}}{a_{P, n+1} q_{P, n}^{2}}-\frac{\sum_{j=P+1}^{K}\left|A_{j}\right|}{\left|A_{P}\right| c}\right) \\
& =B\left(\frac{a_{P+1, n+1} q_{P+1, n}^{2}}{a_{P, n+1} q_{P, n}^{2}}-C\right)
\end{align*}
$$

where $B$ is a positive real number and $C$ is a constant which does not depend on $n$. We also have

$$
\begin{equation*}
\prod_{i=1}^{n} a_{j, i}<q_{j, n}<\prod_{i=1}^{n}\left(a_{j, i}+1\right) \tag{9}
\end{equation*}
$$

for every $j=1,2, \ldots, K, n=1,2, \ldots$ which can be proved by mathematical induction using

$$
q_{j, n+1}=a_{j, n+1} q_{j, n}+q_{j, n-1}
$$

(This identity can be found, for instance, in [6].) (8) and (9) imply

$$
\begin{aligned}
\left|M_{n}\right| & \geq B\left(\frac{a_{P+1, n+1}}{a_{P, n+1}} \prod_{j=1}^{n}\left(\frac{a_{P+1, j}}{a_{P, j}+1}\right)^{2}-C\right) \\
& =B\left(\frac{a_{P+1, n+1}}{a_{P, n+1}}\left(\prod_{j=1}^{n}\left(\frac{a_{P+1, j}}{a_{P, j}}\right) \frac{1}{\prod_{j=1}^{n}\left(1+\frac{1}{a_{P, j}}\right)}\right)^{2}-C\right) .
\end{aligned}
$$

This, Lemma 2.1 and (1) imply

$$
\begin{align*}
\left|M_{n}\right| & \geq B\left(E \frac{1+\frac{\epsilon}{(n+1) \log (n+1)}}{\left(\prod_{j=1}^{\infty}\left(1+\frac{1}{a_{P, j}}\right)\right)^{2}} \prod_{j=1}^{n}\left(1+\frac{\epsilon}{j \log j}\right)^{2}-C\right)  \tag{10}\\
& >B\left(D \prod_{j=1}^{n}\left(1+\frac{\epsilon}{j \log j}\right)-C\right)
\end{align*}
$$

where $D>0$ is a constant which does not depend on $n$. From (10) and the fact that $\prod_{j=1}^{\infty}\left(1+\frac{\epsilon}{n \log n}\right)=\infty$ we obtain

$$
\begin{equation*}
\left|M_{n}\right|>0 \tag{11}
\end{equation*}
$$

for every sufficiently large positive integer $n$.
Now we will prove that $\left|M_{n}\right|<1$ for $n$ sufficiently large. From (7) we obtain

$$
\left|M_{n}\right|=\prod_{j=1}^{K} q_{j, n}\left|\sum_{j=1}^{K} A_{j} R_{j, n}\right| \leq \prod_{j=1}^{K} q_{j, n} \sum_{j=1}^{K}\left|A_{j}\right|\left|R_{j, n}\right|
$$

This and (5) imply

$$
\left|M_{n}\right| \leq \prod_{j=1}^{K} q_{j, n} \sum_{j=1}^{K}\left|A_{j}\right| \frac{1}{a_{j, n+1} q_{j, n}^{2}}
$$

From this and (1) we obtain

$$
\begin{align*}
\left|M_{n}\right| & \leq \prod_{j=1}^{K} q_{j, n} \sum_{j=1}^{K}\left|A_{j}\right| \frac{1}{a_{1, n+1} q_{1, n}^{2}}  \tag{12}\\
& =\frac{\prod_{j=2}^{K} q_{j, n}}{a_{1, n+1} q_{1, n}} \sum_{j=1}^{K}\left|A_{j}\right|=F \frac{\prod_{j=2}^{K} q_{j, n}}{a_{1, n+1} q_{1, n}}
\end{align*}
$$

where $F=\sum_{j=1}^{K}\left|A_{j}\right|$ is a positive real constant which does not depend on $n$. (9) and (12) imply

$$
\left|M_{n}\right| \leq F \frac{\prod_{j=2}^{K} q_{j, n}}{a_{1, n+1} q_{1, n}} \leq F \frac{\prod_{j=2}^{K} \prod_{i=1}^{n}\left(a_{j, i}+1\right)}{\prod_{i=1}^{n+1} a_{1, i}}
$$

From this and Lemma 2.1 we obtain

$$
\begin{align*}
\left|M_{n}\right| & \leq F \frac{\prod_{j=2}^{K} \prod_{i=1}^{n}\left(a_{j, i}+1\right)}{\prod_{i=1}^{n+1} a_{1, i}}  \tag{13}\\
& =F \frac{\prod_{j=2}^{K} \prod_{i=1}^{n} a_{j, i}}{\prod_{i=1}^{n+1} a_{1, i}} \prod_{j=2}^{n} \prod_{i=1}^{n}\left(1+\frac{1}{a_{j, i}}\right) \\
& \leq F \frac{\prod_{j=2}^{K} \prod_{i=1}^{n} a_{j, i}}{\prod_{i=1}^{n+1} a_{1, i}} \prod_{j=2}^{\infty} \prod_{i=1}^{\infty}\left(1+\frac{1}{a_{j, i}}\right) \\
& =F \frac{\prod_{j=2}^{K} C_{j} a_{j, 1}}{a_{1,1} a_{1,2}} \frac{\prod_{j=2}^{K} \prod_{i=2}^{n} a_{j, i}}{\prod_{i=3}^{n+1} a_{1, i}} \\
& =H \frac{\prod_{j=2}^{K} \prod_{i=2}^{n} a_{j, i}}{\prod_{i=3}^{n+1} a_{1, i}}
\end{align*}
$$

where $H>0$ is a constant which does not depend on $n$. (1), (2) and (13) imply

$$
\begin{aligned}
\left|M_{n}\right| & <H \frac{\prod_{j=2}^{K} \prod_{i=2}^{n} a_{j, i}}{\prod_{i=3}^{n+1} a_{1, i}} \leq G \frac{\prod_{j=2}^{K} \prod_{i=2}^{n} a_{K, i}}{\prod_{i=3}^{n+1} a_{1, i}} \\
& =G \frac{\prod_{i=2}^{n} a_{K, i}^{K-1}}{\prod_{i=3}^{n+1} a_{1, i}}=G \prod_{i=2}^{n} \frac{a_{K, i}^{K-1}}{a_{1, i+1}} \leq L \prod_{i=2}^{n} \frac{1}{1+\frac{1}{i}} \\
& =\frac{L}{\prod_{i=2}^{n}\left(1+\frac{1}{i}\right)}
\end{aligned}
$$

where $L$ is a positive real constant which does not depend on $n$. It follows that $\left|M_{n}\right|<1$ for every sufficiently large positive integer $n$. This and (11) imply that $0<\left|M_{n}\right|<1$ for every sufficiently large $n$, where $M_{n}$ is an integer. This is impossible therefore the numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}$ and 1 are linearly independent over the rational numbers.

## 3. Conclusion

Example 1. The continued fractions

$$
\left[2^{K}, 2^{K^{2}}, 2^{K^{3}}, \ldots\right],\left[2.2^{K}, 2.2^{K^{2}}, 2.2^{K^{3}}, \ldots\right], \ldots,\left[K .2^{K}, K .2^{K^{2}}, K .2^{K^{3}}, \ldots\right]
$$

and the number 1 are linearly independent over the rational numbers.
Example 2. The continued fractions

$$
\begin{aligned}
{\left[3^{K+1}, 3^{K^{2}+1}, 3^{K^{3}+1}, \ldots\right],\left[3^{K+2}, 3^{K^{2}+2}, 3^{K^{3}+2}\right.} & , \ldots], \ldots, \\
& {\left[3^{2 K}, 3^{K^{2}+K}, 3^{K^{3}+K}, \ldots\right] }
\end{aligned}
$$

and the number 1 are linearly independent over the rational numbers.
Example 3. The continued fractions

$$
\left[2^{2}, 2^{2^{2}}, 2^{2^{3}}, 2^{2^{4}}, \ldots\right],\left[3^{2}, 3^{2^{2}}, 3^{2^{3}}, 3^{2^{4}}, \ldots\right]
$$

and the number 1 are linearly independent over the rational numbers.
Open Problem. It is not known if the continued fractions

$$
\left[2^{2}, 2^{2^{2}}, 2^{2^{3}}, \ldots\right],\left[3^{2}, 3^{2^{2}}, 3^{2^{3}}, \ldots\right],\left[4^{2}, 4^{2^{2}}, 4^{2^{3}}, \ldots\right]
$$

and the number 1 are linearly independent or not over the rational numbers.
Example 4. Let $\left\{G_{n}\right\}_{n=1}^{\infty}$ be the linear recurrence sequence of the $k$ th order such that $G_{1}, G_{2}, \ldots, G_{k}, b_{0}, \ldots, b_{k}$ belong to positive integers, $G_{1}<G_{2}<\cdots<G_{k}$ and for every positive integer $n, G_{n+k}=G_{n} b_{0}+$ $G_{n+1} b_{1}+\cdots+G_{n+k-1} b_{k-1}$. If the roots $\alpha_{1}, \ldots, \alpha_{s}$ of the equation $x^{k}=$ $b_{0}+b_{1} x+\cdots+b_{k-1} x^{k-1}$ satisfy $\left|\alpha_{1}\right| \geq\left|\alpha_{2}\right| \geq \cdots \geq\left|\alpha_{s}\right|,\left|\alpha_{1}\right|>1$ and $\alpha_{1} / \alpha_{j}$ is not a root of unity for every $j=2,3, \ldots, s$, then the continued fractions

$$
\left[G_{j} G_{k^{1}}, G_{j} G_{k^{2}}, G_{j} G_{k^{3}}, \ldots\right]
$$

( $j=1,2, \ldots, k$ ) and the number 1 are linearly independent over the rational numbers.

This is an immediate consequence of Theorem 2.1 and the inequality $\left|\alpha_{1}\right|^{n(1-\epsilon)}<G_{n}<\left|\alpha_{1}\right|^{n(1+\epsilon)}$ which can be found in [7], for instance.
Acknowledgments. We would like to thank you very much to Professor James Carter and Professor Atilla Pethö for their help with this article.

## References

[1] P. Bundschuh, Transcendental continued fractions. J. Number Theory 18 (1984), 91-98.
[2] H. Davenport, K. F. Roth, Rational approximations to algebraic numbers. Mathematika 2 (1955), 160-167.
[3] G. M. Fichtengolc, Lecture on Differential and Integrational Calculus II (Russian). Fizmatgiz, 1963.
[4] J. Hančl, Linearly unrelated sequences. Pacific J. Math. 190 (1999), 299-310.
[5] J. Hančl, Continued fractional algebraic independence of sequences. Publ. Math. Debrecen 46 (1995), 27-31.
[6] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers. Oxford Univ. Press, 1985.
[7] H. P. Schlickewei, A. J. van der Poorten, The growth conditions for recurrence sequences. Macquarie University Math. Rep. 82-0041, North Ryde, Australia, 1982.

Jaroslav Hančl
Department of Mathematics
University of Ostrava
Dvořákova 7
70103 Ostrava 1
Czech Republic
E-mail : hanclCosu.cz

