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Linear independence of continued fractions

par JAROSLAV HANCL

REsSuME. Nous donnons un critére d’indépendance linéaire sur le
corps des rationnels qui s’applique & une famille donnée de nom-
bres réels dont les développements en fractions continues satisfont
certaines conditions.

ABSTRACT. The main result of this paper is a criterion for linear
independence of continued fractions over the rational numbers.
The proof is based on their special properties.

1. Introduction

Forty years ago Davenport and Roth in [2] proved that the continued

fraction [ay,a2,...], where a1, az,... are positive integers satisfying
lim sup((log log ay,) - ogn) = 00,
n—00 n

is a transcendental number. The generalization of transcendence is alge-
braic independence and there are several results concerning the algebraic
independence of continued fractions. See, for instance, Bundschuh [1] or
Hanél [5]. On the other hand it is a well known fact that if a positive
real number has a finite continued fractional expansion then it is a rational
number, and if not it is an irrational number. Irrationality is a special case
of linear independence and this paper deals with such a theory. By the
way, as to linear independence of series, one can find the criterion in [4],
for instance.

2. Linear independence

Theorem 2.1. Let € > 1 be a real number, K be a natural number and
{ajn}2, (1 =1,2,...,K) be K sequences of positive integers such that
€

(1) aj+1,n > @jn(l + nlogn)
and

_ 1
(2) G141 > af (1 + -)

Manuscrit regu le 6 novembre 2000.
Supported by the grant 201/01/0471 of the Czech Grant Agency.



490 Jaroslav HANCL

hold for every sufficiently large positive integer n and j = 1,2,3,..., K —1.
Then the continued fractions aj = [a;1,a52,--.] (7 = 1,2,...,K) and the
number 1 are linearly independent over the rational numbers.

Lemma 2.1. Let ajy,, j = 1,2,...,K, n = 1,2,.. and K > 2 satisfy all
conditions stated in Theorem 2.1. Then
o0

1

H(1+—)=Cj < oo.

n=1 Gjn
Proof of Lemma 2.1. From (1) and (2) we obtain

1 € ;
> J -1 K- 1 j—1
¢ (K—-1)(K=3) 1 € _\j-1
>a ]"‘ (1+(n—1)log('n, 1)) (1+ —1)(1+nlogn)

1
2 a1+ )1+ ) > (L4 D+ o

for every sufficiently large positive integer n and j = 1, 2,..., K. By math-
ematical induction we get

)

aGin>Y 14+-)1+
i _2( 0+

j=
for every n = 2,3,... and j = 1,2,...,K, where Y is a positive real
constant which does not depend on n. It follows that

1
g(u—, ) < H(1+YH,—2(1+ o uog,)) =Cj < 00

because the series

z:H a1+ 1)(1+

n=2 J logJ)
is convergent. (To prove this last fact one can use Bertrand’s criterion for
convergent series, for instance. See [3] for example.) a

Proof of Theorem 2.1. If K = 1, then o; has an infinite continued fraction
expansion. In this case a; is irrational and Theorem 2.1 holds. Now we
will consider the case in which K > 2 and n is a sufficiently large positive
integer. Let us assume that there exist K +1 integers Ay, As,..., Ak, Ax41
(not all of which equal zero) such that

K
(3) Agp =) Ajo;.
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We can write each continued fraction o; (j = 1,2,..., K) in the form
4) o =22 4 Ry,
qjn

where ?i:"_ [aj1,aj2,.-.,a5n] is the n-th partial fraction of o; and R;y,
is the remainder. For R;; we have the estimation

Pin 1
(5) |Rjn| = | — ] | <
Jn a’j7n+lqj,n
and
(6) |Rjnl > —
T aind,
where ¢ > 0 is a constant which depends only on ay,as,...,ak. (For the

proof see, for instance, [6].) Substituting (4) into (3) we obtain

A1 = ZA(p]’ + Rjn)-
Qi

Multiplying both sides of the last equation by Hf:l gjn We obtain

Ak H qjn = H qjn Z Aj (p]’n + Rj.n)'

i=1
This implies

K K
(M Ma=(Aks1— > 42 [ g = Hq],nZA Rjn

=1 Tn o j=1

where M, is an integer.

First we will prove that |M,| > 0. Let P be the least positive integer
such that Ap # 0. (Such a P must exist because not every A; is equal to
zero.) Then we have

K K K K
|Ma| =[] gin Y _ AiRinl = 1] 0 Y AjRjnl
j=1 j=1 Jj=1 j=P

K K
qu,n |Apl|IRpal = S 145]1Rjnl)-

j=P+1
This, (5) and (6) 1mply

> )

|Mn| 2 qu,n(|AP|
an j=P+1 J;"+1q],n

j=1
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From this last inequality and (1) we obtain
c Z]—P+1 |Aj|

K
®) Ml > []ain(4p|

)
j=1 ap,n+1q}"a,,. aP+1,n+1Qp+1,n
K K
S [Tj=1 9mlAPlc aP410419P41,0 3 Zj:P—{-llAjI)
- aP+1,n+1Q%>+1,n aP,n+1q%=,n lAPlc

2
aP+1,n+19p 41,0

= B( -0)

2
a'P n+ 1 qP,n

where B is a positive real number and C is a constant which does not
depend on n. We also have

n n
9 [T < gin < [[(as5+1)
=1 =1

forevery j =1,2,...,K,n=1,2,... which can be proved by mathematical
induction using

djn+1 = Gjn+195,n + Gjn—-1-
(This identity can be found, for instance, in [6].) (8) and (9) imply

aP+1,n+1 aP+1,5 \2
M, > B -C
|Ma] > B( Hfam 4 -0)

ap41n+1 ap41,j 1 2
=B )2 - 0).
( GPn+1 H @p,;j )H, 11+ 5)

i=1
This, Lemma 2.1 and (1) imply

4
(10)  |Mg| > B(E (H,-:(Jr 1 ;g "+)1)2 H( 170
DJHl( JlOgJ )

where D > 0 is a constant which does not depend on n. From (10) and the
fact that J[32, (1 + 7Tegn) = 00 We obtain

(11) |My| >0

for every sufficiently large positive integer n.
Now we will prove that [M,| < 1 for n sufficiently large. From (7) we

obtain
|My| = Hq,,nlsz Rjnl < Hq,, Z |45]|1R; nl-

j=1
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This and (5) imply

K K 1
IM S q.’ A. - 9 -
al JI=[1 ,njz;zl rwer
From this and (1) we obtain
12 M,| < Aj
(12) |Ma] < Hq,nD lawq

=1
H] 2‘11"2 2‘11n
— b A I — b

al,n+1<11,n al,n+1<11,n

where F = ZJK=1 |A;j| is a positive real constant which does not depend on
n. (9) and (12) imply

K K
IM,| < FHj=2 9jn < FHJ'=2 [Tisi(aji +1)
" et T mtlay

From this and Lemma 2.1 we obtain

K
[1;= ITizi(aji +1)

(13) |Mp| < F

:‘—+11 01,i
K
H —2 l-[l—l ]’1'
n+1 H H(l +—
=1 0L  j_9i—) aJ,z
H Py |
=1 41, j=2i=1
_ Fl'[,-:z Cjaj,l H j=2 Hz—2 Qjyi
a1,101,2 ntlan
K
—F 21_[7—2 aji
- n+1
1=3 al,z

where H > 0 is a constant which does not depend on n. (1), (2) and (13)
imply
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K n K n .

IM,| < HHj=2 = aji < an_z Il 0k,
n n+1 . n+1
i=3 @ z_3 a1,

n K 1 n

=2 Kz

i=3 @1,i =2 I’H'l 1—2

L

where L is a positive real constant which does not depend on n. It follows
that |M,| < 1 for every sufficiently large positive integer n. This and (11)
imply that 0 < |M,| < 1 for every sufficiently large n, where M, is an
integer. This is impossible therefore the numbers a;,as,...,ax and 1 are
linearly independent over the rational numbers. O
3. Conclusion
Example 1. The continued fractions
[2K,2K? oK° | [2.2K,2.2K" 22K° | ... [K.2K K2K' K.2K° ]

and the number 1 are linearly independent over the rational numbers.
Example 2. The continued fractions

[3K+11 3K2+1’3K3+1, . ']’ [3K+2’ 3K2+2’ 3K3+2’ L. ]’ cees
[32K 3K?+K 3K3+K ]

and the number 1 are linearly independent over the rational numbers.
Example 3. The continued fractions
[22,2%° 22° 22 ...} [3%,3%°,3%" 3% .. .]
and the number 1 are linearly independent over the rational numbers.
Open Problem. It is not known if the continued fractions
[22,2%°,2%° . ..],[3,3%",3%",...], [42,4%" 4% ..]
and the number 1 are linearly independent or not over the rational numbers.

Example 4. Let {G,p}S2, be the linear recurrence sequence of the k-
th order such that G;,Ga,...,Gk,bo,...,br belong to positive integers,
G; < G2 < --- < Gy and for every positive integer n, Gpyr = Gnbo +
Gn41by + -+ + Gpygr_1bk_1. If the roots ay,..., o, of the equation z*F =
bo+b1w+--'+bk_1$k_l satisfy |a1| > |a2| > 2> as), |a1| > 1and al/aj
is not a root of unity for every j = 2,3,...,s, then the continued fractions

[G;Gy1, GGz, GGy, . .. |
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(4 =1,2,...,k) and the number 1 are linearly independent over the rational
numbers.

This is an immediate consequence of Theorem 2.1 and the inequality
loa|"(1=9) < Gy, < |ay|™*€) which can be found in [7], for instance.
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