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Linear independence of continued fractions

par JAROSLAV HANCL

RÉSUMÉ. Nous donnons un critère d’indépendance linéaire sur le
corps des rationnels qui s’applique à une famille donnée de nom-
bres réels dont les développements en fractions continues satisfont
certaines conditions.

ABSTRACT. The main result of this paper is a criterion for linear

independence of continued fractions over the rational numbers.
The proof is based on their special properties.

1. Introduction

Forty years ago Davenport and Roth in [2] proved that the continued
fraction [01,02?’" L where al, a2, ... are positive integers satisfying

is a transcendental number. The generalization of transcendence is alge-
braic independence and there are several results concerning the algebraic
independence of continued fractions. See, for instance, Bundschuh [1] or
Hancl [5]. On the other hand it is a well known fact that if a positive
real number has a finite continued fractional expansion then it is a rational
number, and if not it is an irrational number. Irrationality is a special case
of linear independence and this paper deals with such a theory. By the
way, as to linear independence of series, one can find the criterion in [4],
for instance.

2. Linear independence

Theorem 2.1. Let E &#x3E; 1 be a real number, K be a natural number and
= 1, 2, ... , K) be K sequences of positive integers such that

and
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hold for every sufficiently large positive integer n and j - 1, 2, 3, ... , I~ -1.
Then the continued fractions [aj,1, ~,2? -" ] ( j - 1, 2, ... , K) and the
number 1 are linearly independent over the rational numbers.

Lemma 2.1. Let 1, 2, ... , K, n = 1, 2, .. and K &#x3E; 2 satisfy all
conditions stated in Theorem 2.1. Then

Proof of Lemma ,~.1. From (1) and (2) we obtain

for every sufficiently large positive integer n and j = 1, 2, ... , K. By math-
ematical induction we get

for every n = 2, 3, ... and j = 1, 2, ... , I~, where Y is a positive real
constant which does not depend on n. It follows that

because the series

is convergent. (To prove this last fact one can use Bertrand’s criterion for
convergent series, for instance. See [3] for example.) 0

Proof of Theorem 2.1. If K = 1, then al has an infinite continued fraction
expansion. In this case al is irrational and Theorem 2.1 holds. Now we
will consider the case in which K &#x3E; 2 and n is a sufficiently large positive
integer. Let us assume that there exist K+ 1 integers A1, A2, ... , AK, 
(not all of which equal zero) such that
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We can write each continued fraction aj ( j = 1, 2, ... , K) in the form

where q = aj,2, ... , is the n-th partial fraction of aj and Rj,n
is the remainder. For Rj,n we have the estimation

and

where c &#x3E; 0 is a constant which depends only on al, a2, ... , aK. (For the
proof see, for instance, [6].) Substituting (4) into (3) we obtain

Multiplying both sides of the last equation by we obtain

This implies

where Mn is an integer.
First we will prove that &#x3E; 0. Let P be the least positive integer

such that 0. (Such a P must exist because not every Aj is equal to
zero.) Then we have

This, (5) and (6) imply
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From this last inequality and (1) we obtain

where B is a positive real number and C is a constant which does not
depend on n. We also have

for every j = 1, 2, ... , K, n = 1, 2, ... which can be proved by mathematical
induction using

(This identity can be found, for instance, in [6].) (8) and (9) imply

This, Lemma 2.1 and (1) imply

where D &#x3E; 0 is a constant which does not depend on n. From (10) and the
fact that we obtain

for every sufficiently large positive integer n.
Now we will prove that IMni ]  1 for n sufficiently large. From (7) we

obtain
- 
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This and (5) imply

From this and (1) we obtain

where F = EK 11 Aj I is a positive real constant which does not depend on
n. (9) and (12) imply

From this and Lemma 2.1 we obtain

where H &#x3E; 0 is a constant which does not depend on n. (1), (2) and (13)
imply
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where L is a positive real constant which does not depend on n. It follows
that IMnl (  1 for every sufficiently large positive integer n. This and (11)
imply that 0  I Mn I  1 for every sufficiently large n, where Mn is an
integer. This is impossible therefore the numbers ai , a2, ... , aK and 1 are
linearly independent over the rational numbers. 0

3. Conclusion

Example 1. The continued fractions

and the number 1 are linearly independent over the rational numbers.

Example 2. The continued fractions

and the number 1 are linearly independent over the rational numbers.

Example 3. The continued fractions

and the number 1 are linearly independent over the rational numbers.

Open Problem. It is not known if the continued fractions

and the number 1 are linearly independent or not over the rational numbers.

Example 4. Let be the linear recurrence sequence of the k-
th order such that G1, G2, ... , G~, bo, ... , b~ belong to positive integers,
G1  G2  ...  Gk and for every positive integer n, Gn+k = Gnbo +
Gn+lb1 + ~ - ~ + If the roots 0:1, ... as of the equation xk =
bo+b1x+...+bk-lXk-l satisfy jail &#x3E; la2) &#x3E; ... ~ la.1, 10:11&#x3E; 1 and 
is not a root of unity for every j = 2, 3, ... , s, then the continued fractions
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( j = 1, 2, ... , k) and the number 1 are linearly independent over the rational
numbers.

This is an immediate consequence of Theorem 2.1 and the inequality
 Gn which can be found in [7], for instance.
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