Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients
Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 2, p. 497-516

In this paper the Engel continued fraction (ECF) expansion of any x(0,1) is introduced. Basic and ergodic properties of this expansion are studied. Also the relation between the ECF and F. Ryde’s monotonen, nicht-abnehmenden Kettenbruch (MNK) is studied.

On introduit la notion de développement en fractions continues de Engel. Nous étudions notamment les propriétés ergodiques de ce développement et le lien avec celui introduit par F. Ryde monotonen, nicht-abnehmenden Kettenbruch.

@article{JTNB_2002__14_2_497_0,
     author = {Hartono, Yusuf and Kraaikamp, Cornelis and Schweiger, Fritz},
     title = {Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux I},
     volume = {14},
     number = {2},
     year = {2002},
     pages = {497-516},
     zbl = {1067.11042},
     mrnumber = {2040690},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2002__14_2_497_0}
}
Hartono, Yusuf; Kraaikamp, Cor; Schweiger, Fritz. Algebraic and ergodic properties of a new continued fraction algorithm with non-decreasing partial quotients. Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 497-516. http://www.numdam.org/item/JTNB_2002__14_2_497_0/

[AF] R.L. Adler, L. Flatto, The backward continued fraction map and geodesic flow. Ergodic Theory Dynam. Systems 4 (1984), no. 4, 487-492. MR 86h:58116 | MR 779707 | Zbl 0563.58019

[B] E. Borel, Sur les développements unitaires normaux. C. R. Acad. Sci. Paris 225, (1947), 51. MR 9,292c | MR 23007 | Zbl 0029.15303

[DK] K. Dajani, C. Kraaikamp, The Mother of All Continued Fractions. Coll. Math. 84/85 (2000), 109-123. | MR 1778844 | Zbl 0961.11027

[ERS] P. Erdös, A. Rényi, P. Szüsz, On Engel's and Sylvester's series. Ann. Univ. Sci. Budapest. Etvs. Sect. Math. 1 (1958), 7-32. MR 21#1288 | MR 102496 | Zbl 0107.27002

[G] J. Galambos, Representations of real numbers by infinite series. Lecture Notes in Mathematics 502, Springer-Verlag, Berlin-New York, 1976. MR 58#27873 | MR 568141 | Zbl 0322.10002

[HL] P. Hubert, Y. Lacroix, Renormalization of algorithms in the probabilistic sense. New trends in probability and statistics, Vol. 4 (Palanga, 1996), 401-412, VSP, Utrecht, 1997. MR 2000c:11131 | MR 1653625 | Zbl 1040.11511

[K] C. Kraaikamp, A new class of continued fraction expansions. Acta Arith. 57 (1991), 1-39. MR 92a:11090 | MR 1093246 | Zbl 0721.11029

[K2K] S. Kalpazidou, A. Knopfmacher, J. Knopfmacher, Lüroth-type alternating series representations for real numbers. Acta Arith. 55 (1990), 311-322. MR 91i:11011 | MR 1069185 | Zbl 0702.11048

[Leh] J. Lehner, Semiregular continued fractions whose partial denominators are 1 or 2. Contemp. Math. 169 (1994), 407-410. MR 95e:11011 | MR 1292915 | Zbl 0814.11008

[L] P. Lévy, Remarques sur un théorème de M. Émile Borel. C. R. Acad. Sci. Paris 225 (1947), 918-919. MR 9,292d | MR 23008 | Zbl 0029.15304

[R] A. Rényi, A new approach to the theory of Engel's series. Ann. Univ. Sci. Budapest. Etvs Sect. Math. 5 (1962), 25-32. MR 27#126 | MR 150123 | Zbl 0232.10028

[Ry1] F. Ryde, Eine neue Art monotoner Kettenbruchentwicklungen. Ark. Mat. 1 (1951), 319-339. MR 13,115c | MR 42457 | Zbl 0042.29602

[Ry2] F. Ryde, Sur les fractions continues monotones nondécroissantes périodiques. Ark. Mat. 1 (1951), 409-420. MR 13,115d | MR 42458 | Zbl 0042.29603

[Si] W. Sierpinski, Sur quelques algorithmes pour développer les nombres réels en séries. In: Oeuvres choisies Tome I, Warszawa 1974, 236-254. MR 54#2405 | MR 414302

[S1] F. Schweiger, Ergodische Theorie der Engelschen und Sylvesterschen Reihen. Czechoslovak Math. J. 20 (95) 1970, 243-245. MR 41#3712; Czechoslovak Math. J. 21 (96) 1971, 165. MR 43#2190 | MR 259070 | Zbl 0197.34501

[S2] F. Schweiger, Metrische Ergebnisse über den Kotangensalgorithmus. Acta Arith. 26 (1975), 217-222. MR 51#10269 | MR 374069 | Zbl 0261.10042

[S3] F. Schweiger, Ergodic theory of fibred systems and metric number theory. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR 97h:11083 | MR 1419320 | Zbl 0819.11027

[T] M. Thaler, σ-endliche invariante Masse für die Engelschen Reihen. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 116 (1979), no. 2, 46-48. MR 80j:28028 | Zbl 0412.10038

[V] W. Vervaat, Success epochs in Bernoulli trials (with applications in number theory). Mathematical Centre Tracts 42, Mathematisch Centrum, Amsterdam, 1972. MR 48#7331 | MR 328989 | Zbl 0267.60003