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Minimal redundant digit expansions
in the Gaussian integers

par CLEMENS HEUBERGER

RÉSUMÉ. Un résultat récent établit qu’il suffit de connaître les
deux derniers chiffres significatifs du développement en base q
usuel d’un entier pour calculer le dernier chiffre significatif dans
le développement en base q redondant minimal. Nous montrons
que l’énoncé analogue pour les entiers de Gauss est faux.

ABSTRACT. We consider minimal redundant digit expansions in
canonical number systems in the Gaussian integers. In contrast to
the case of rational integers, where the knowledge of the two least
significant digits in the "standard" expansion suffices to calculate
the least significant digit in a minimal redundant expansion, such
a property does not hold in the Gaussian numbers: We prove
that there exist pairs of numbers whose non-redundant expansions
agree arbitrarily well but which have different least significant
digits in minimal redundant expansions.

1. Introduction

Let n and q &#x3E; 2 be positive rational integers. Redundant q-ary expan-
sions n = with arbitrary digits E Z have been studied by
several authors, motivated by applications from cryptography and coding
theory. For general positional number systems, we refer to Knuth [3, Sec-
tion 4.1.]. An overview over results on redundant q-ary digit expansions is
contained in [1]. The aim is to minimize the cost of an expansion which is
given by

Recently, we proved [1] that the knowledge of the first two digits qo, r~l of
the "standard" expansion n = E" 0 ?7j qj with 0  q suffices to decidej= -

what digit -o should be taken in order to achieve a minimal expansion with
respect to the costs (1). By using this information, we could provide an
efRcient algorithm to compute a minimal expansion, a formula to compute
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a single digit without having to compute the others, and we gave estimates
for the average costs of such an expansion.
A natural question is whether such a result is also true if we replace

the q-ary expansion in the rational integers by an expansion in a canonical
number system in some algebraic number field. In this paper, we give a
negative answer for the case of the Gaussian integers.

Let R be a subring of the ring of integers in an algebraic number field K.
For # E R, (,8, {0, ... , 11) is called a canonical number system
if all a E R have a unique representation

We refer to Kovics and Peth6 [4] for further discussions on canonical num-
ber systems.

Kitai and Szab6 [2] characterized canonical number systems in the
Gaussian integers: # E is a base of a canonical number system if
and only if Re #  0 and Im,Ci = f 1.

Let (3 be such a base and a E Z[i]. A redundant expansion of a in base
{3 is a tuple (ro, ... , ri) with rj E Z for 0  j  I such that

A Minimal redundant expansions of a in base {3 is a redundant expansion
with minimum costs

The main result of this note is the following theorem.

Theorem 1. Let,8 be a base of a canonical number s ystem in the Gaussian
integers. For all L &#x3E; 0 there is a pair of numbers a, a’ with the following
properties:
1. Let a = and a’ = ¿j=o aj,8J be the unique representations

according to (2) with l, l’ &#x3E; L. Then aj = aj for 0  j  L.
2. For all pairs (ro, ... , rs) and (ro, ... , of minirrzal redundant expan-

sions of a and a’, respectively, we have ro =1= ro.
This implies that there are numbers where the knowledge of the first

L + 1 digits in the "standard" expansion (2) cannot be used to derive the
first digit of a minimal expansion. We call a pair a, a’ as described in
Theorem 1 a critical pair.
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According to the result of Katai and Szab6 we have to consider# = -n+I
for n &#x3E; 1; without loss of generality we may assume ~3 = -n + i. We first
discuss general properties of minimal expansions in Section 2. We show that
not all integers can occur in a minimal expansion. This implies that there
are usually two choices for the least significant digit of the expansion. We
demonstrate how to prove rules which can avoid branching in some cases.
Some of these rules are based on the fact that some digits cannot occur,
other rules have to be proved by checking minimal expansions of a certain
set of numbers. Then we construct a critical pair for n &#x3E; 3 in Section 3.
The special cases n = 1 and n = 2 are investigated in Sections 4 and 5,
respectively. The construction of critical pairs is done as follows. First, we
collect enough rules in order to derive minimal expansions of some numbers
recursively. In a second step, we take all possible least significant digits for
one component of the pretended critical pair, use the known expansions
from the previous step in order to calculate the minimum costs for all
alternatives and see that only one of the possible least significant digits
leads to a minimal expansion. By doing the same for the other component
of the critical pair we prove that the least significant digits in minimal
redundant expansions differ.

For an A C Z we use the notation

A* := ak E A and ak = 0 for almost all A:}.

We identify finite sequences (ao, ... , al ) with the corresponding infinite se-
quences (ao, ... , al, 0, ... ). The indices of all sequences start with 0 unless
otherwise stated.

For given ~3 and for a E Z[I] and a E Z* we write a ’::::.,8 a if a =

Similarly, we write

We define

opt,6 (a) := {r E Z* : r is a minimal redundant expansion of a in base {3}
and extend this notation to a E Z* by opt~(a) := 
The concatenation of finite sequences is denoted by 

’

This notation is extended to concatenations of a finite sequence a E Z~
with a set of infinite sequences R C Z*: a &#x26; R :_ {a &#x26; b : b E RI. Finally,
the repetition of a sequence is defined by (ao, ... , = (ao, ... , al ) &#x26;
(ao, ... , al ) &#x26; ... &#x26; (ao, ... , where the block (ao, ... , al ) is repeated k
times.
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2. Properties of Minimal Expansions

Let us first state the following observation:

Not all integers can occur as digits in a minimal expansion, as is shown
in the following lemma.

Then we have

Proof. We consider first the case n &#x3E; 3. Assume that (7b) is not true.
Then there is some r E optp(a) and some j such that lrjl &#x3E; n2/2 + n + 1.

is also a
- - - - -

redundant expansion of a for Q = sign(rj ) . We have

If lrj &#x3E; M, we conclude that

otherwise, we get

This is a contradiction to the assumption that r is a minimal expansion.
Therefore, (7b) is proved 3. Because n2/2 + n + 1  M for n &#x3E; 3,
this yields (7a) also.
The proof of (7b) for n = 1 and n = 2 is similar: We repeat the above

argument using the expansions
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instead of relation (5).
Now, we prove (7a) for n = 1. Assume that fl D* = 0 and

let r E By assumption, there is some j such that = 2. Let
a := sign(r~).

If j  l-3, we may replace r by’= (ro, ... , 
CT, r~+4, ... , ri), since (-2, 0,1,1) ’:::t.,8 0 and c(r’) - c(r)  0. We emphasize
that r and r’ are of same length. Therefore we repeat this process finitely
many times in order to obtain an r := (ro,..., ri) E opt~(a) such that

We may replace (ri-2 7ri - 1, ri) by any element of optp(r,-2, r’-l, rl). It

can easily be checked that n D* ~ 0 for all choices

Finally, we note that for n = 2, (7a) can be proved similarly using relation
(5). a

We note that Lemma 2 and Lemma 3 can be used to calculate one (or all)
minimal expansion in exponential time. Assume that we want to compute
opt~(a) for some a = a+bi. Since a - (a + nb) (mod ~3), the set of possible
least significant digits is contained in R := n (-Un, Un~. This
yields

An implementation of these ideas in Mathematica can be obtained from

http://vwv.opt.math.tu-graz.ac.at/-cheub/publications/minimal
redundantgauss/.
The following lemma shows how to prove some rules of the following type:

If the standard expansion (2) starts with digits (ao, ... , then there is
an optimal expansion which starts with the digit ro.

Lemma 4. Let n &#x3E; 1, ,(3 = -n + i, a E Dl+l, a ’=={3 a and ro E Z with

Irol  M. Then the following conditions are equivalent:
1. For adl t E Z* we have &#x26; t) fl ro &#x26; Z* 7~ 0.
2. For adl a’ that satisfy a’ - a (mod and for which there is an

s E with a’ ’:::::!.,8 s we have

Note that s in condition 2 and a are of same length 1 + 1.

Proof. Assume condition 1. Since a’ - a (mod ~3l+1 ) there is an expansion
a’ a &#x26; t for some t E Z*. Therefore there exists some s E Z* such that
, ’- , -’- ..,
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Conversely, assume condition 2. Let t E Z* and define a" ’:::1.,8 a &#x26; t.
Choose some s E D* n &#x26; t) = opt (a"). This intersection is non-
empty by (7a).
We define a’ := and note that a’ - a" m a (mod ~3l+1). By

assumption, there is some l’ &#x3E; I and some r = (rl, ... , rl’) E Z" (we do not
enforce rl’ =1= 0) such that (ro) &#x26; r E 

By construction of r, we get

Since s E opt, (a"), this proves that (ro) &#x26; u E opt,8( a") = &#x26; t). D

The following lemma shows that condition 2 of Lemma 4 can be checked
efficiently:
Lemma 5. Let n &#x3E;_ 1, ,8 = -n + i, a, a’ E Dl+l, a ’:::!.,8 a, a’ a’ such
that 0:’ - a (mod ,C~l+1 . Then there is some E Z i with

- ~ I -

such that a’ = a + 

Proof. Let y E Z lil such that a’ - a = We obtain
I

3. Critical Pair for n &#x3E; 3

The following lemma calculates the minimal expansion of some special
numbers which will occur in the construction of a critical pair.
Lemma 6. Let n &#x3E; 3, ~3 = -n + i, and

Then x E Z, and for k &#x3E; 1 we have



523

Proof. For R E Z*, Lemma 2 and (7b) imply

By Lemma 2 and (7b), an optimal expansion of x may start with x or
x - M. Since Ix - At) + 1 &#x3E; Ixl for n &#x3E; 5, we proved (l0a) in this case. For
n E {3, 4}, relation (l0a) can be checked directly. Similarly, we can verify
(lOd). 

- -

The proofs of (lOc), (l0e), and (lOt) for k = 1 are similar.
An inductive argument completes the proof of the lemma.

We are now able to construct a critical pair:

Proposition 7. Let n &#x3E; 3y ,~3 = -n + i, and
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Then

Proof. We first consider the case 1 = 2k with k &#x3E; 2. As in (8), relations
(7b) and (lla) imply
2 - M, ~ - 2n) &#x26; (x) ~l~-l~ ~ . We can now use the expansions
calculated in (lOb) and (lOt) to obtain the following candidates for minimal
expansions of (x - 2) &#x26; (x)~2~‘~.

Since

the first alternative has to be taken in order to minimize the costs. We
note that we proved equality in (lOb), which yields (12) for 1 = 2k &#x3E; 4.
The other cases can be proved similarly. D

4. Critical Pair for n = 1

In Table 1, we collect some choices (a, ro) E Dl+l x D for which the
conditions of Lemma 4 are fulfilled.
The following lemma will be needed for the construction of a critical pair

for n = 1:

Lemma 8. Let {3 - -1 + i, R E Z*, q &#x3E; 0, 0  r  5, and s = 5q + r.
Then
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TABLE 1. Some valid choices for n = 1, a, and ro in Lemma 4

Proof. First, we prove that
, , 1-1 

From Table 1 we derive

Using (13) and noting that and that

Applying this relation q times completes the proof. 0

We are now able to construct a critical pair (which proves Theorem 1 for
n = 1).

Proposition 9. Let n = 1, ~3 = -1 -~ i, q &#x3E; 1 and
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Proof. From (7b) we see that optg (a) C (1) &#x26; Z* U (-1) &#x26; Z*. We note

that a can also be represented by ((- 1, 0, 2,1, 0, 0) &#x26; (1, 1, O)(5q+l»). We
use Table 1 and Lemma 8 to calculate

Similarly, we obtain

Since by (15) an optimal expansion of ((0, 1, 0, 0, 0) &#x26; (1, 1, 0) (5q+ 1) ) has
cost 3 + 6q and an optimal expansion of ~(0, 2,1, 0, 0) &#x26; (1,1, O)~59+1)~ has
cost 2 + 6q, we get (14) for a.

Analogously, we note that

where the optimal cost is 6q + 3. On the other hand, a’ can be represented
by ( -1, 0, 2,1, 0, 0) &#x26; ( 1,1, 0)(5q+l) &#x26; (1, 1, 1), which yields

with optimal cost 6q + 4. This completes the proof. D

In the case n = 1, Table 1 shows that in most cases it is sufficient to know
a few more digits in the "standard" expansion to derive the correct digit
in an optimal expansion. Therefore, an algorithm to compute an optimal
expansion could precompute some more entries for Table 1 and branch only
in those cases where no information is known.
We note that the relation (-1 -f- i)4 = -4 strongly relates the standard

expansion in base -1 + i to the expansion in base -4 in Z. However, this
observation cannot be used for minimal expansions because this correspon-
dence does not respect the costs (4).

5. Critical Pair for n = 2

We will repeatedly use the relation (5, -l, -3, -1) 0 and the rules

according to Lemma 4 which are given in Table 2.



527

TABLE 2. Some valid choices for n = 2, a, and ro in Lemma 4

Proof. As in the proof of Lemma 8, repeated application of rules in Table 2
yields

for R E Z*. Iterating this result and noting that ( 1, 3,1 ) E 3,1 )
proves the lemma. 0

The proof of the following proposition completes the proof of Theorem 1
for n = 2:

Proposition 11. Let n = 2, ~3 = -2 ~- i, u &#x3E; 0. Then

Proof. Let a ( 3, 4, 4,1 ) &#x26; (1,3, 1)(u). We write u : = 2s + r with r E
~ 0,1 ~ . According to (7b), we have to consider first digits - ?, - 2, 3, 8. All
possible expansions are given in Table 3, which has been computed using
Table 2, Lemma 10 and an inductive argument (for expansions starting
with -7). 0

TABLE 3. Minimal Expansions of a for n = 2 and u &#x3E; 1
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