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Polynomial cycles in
certain rings of rationals

par WLADYSLAW NARKIEWICZ

To Professor Michel France on his 65th birthday

RÉSUMÉ. On montre que la méthode développée dans [HKN3]
peut être appliquée pour l’étude des cycles polynomiaux dans cer-
tains anneaux, notamment les anneaux Z [1/N] pour lesquels nous
décrivons les cycles polynomiaux lorsque N est impair ou le double
d’un nombre premier.

ABSTRACT. It is shown that the methods established in [HKN3]
can be effectively used to study polynomial cycles in certain rings.
We shall consider the rings Z [1/N] and shall describe polynomial
cycles in the case when N is either odd or twice a prime.

0. Let R be an integral domain of zero characteristic. A sequence

of elements of R is called a polynornial sequence if there exists a polynomial
f E R[X] such that f (xi) _ holds for i = 0,1, ... , n -1. A polynomial
sequence ~ is called a polynomial cycle of length n (or an n-cycle for short) if
the elements xo, xl, ... , Xn- 1 are distinct and Xn = It is well-known (see
e.g. [HKN1]) that if R is finitely generated then the length of a polynomial
cycle in R is bounded by a number depending only on the ring in question
but not on the polynomial realizing it. In the case when R is the ring of
integers in a p-adic field or an algebraic number field, such explicit bounds
were given by T. Pezda ( (Pe~ ) .
Two cycles ~ = xl, ... , and 1/ = (yo7 y, 7 ... yo ) of the

same length are called equivalent, if for some a E R and u in the group
U(R) of invertible elements of R (which we shall call units of R) one has

In such case, if f E R[X] is a polynomial realizing ~, then
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has its coefficients in R and realizes q. Obviously every cycle is equivalent
to a cycle with xo = 0. A cycle ~ is called normalized, if xo = 0 and xl = 1.
It is easy to show (see e.g. the proof of Lemma 12.7 (ii) in [Nl]) that if
~ = x 11 - - - i Xn- 1) xo) is an n-cycle and we put Yj = (~~ - xo)
then yo, yl, ... all lie in R and fJ = (yo, yl, ... , i Yn- 1) yo) is a normalized

cycle. We shall call 77 the nominalization of . Note that if Xl is not invertible
then the cycles ~ and 77 are not equivalent.
A cycle is called linear, if it can be realized by a linear polynomial. It is a

trivial task to describe all linear cycles. It has been shown in [HKN3] that
in a finitely generated integral domain R of zero characteristic in which
every non-zero element lies in only finitely many principal ideals there are
only finitely many non-equivalent non-linear polynomial cycles.
The purpose of this note is to show that the arguments presented in

[HKN3] can be used to obtain an explicit construction of all polynomial
cycles in certain rings. We shall consider finitely generated subrings of the
field of rational numbers, containing 1. Clearly every such ring has the
form

where N is a positive square-free integer. Denote by C(N) the set of lengths
of polynomial cycles in 0~). Our aim is to obtain some information about
these sets and to compute them in the case when N is either odd or twice
a prime.

The calculations were performed using Borland Pascal for Windows 7.0,
PARI 1.38.62 [Ba] and KASH 1.9 [Da].

I am grateful to an anonymous referee, whose suggestions helped to im-
prove the presentation.

1. We recall first certain simple facts about polynomial cycles:

Lemma 1. Let R be a domain and denote by U(R) its group of units.
(i) ([N], Lemma 12.8) If (XO,Xl,X2,...,Xn-l,XO) (xo = 0, xl = 1) is a

normalized cycle in R of length n and zue extend Xj by putting xj = 
for j &#x3E; n, then E U(R) holds for i = 1, 2, .... Moreover for every
i 0 the elements xi and Xj are associated, which means that
their ratio is a unit, and if ( j, n) = 1 then xj is a unit.

(ii) ([N], Corollary 2 to Lemma 12.8) If R contains an ideal I of finite
norm N = #(R/I) &#x3E; 1, then prime divisors of cycle-lengths in R cannot
exceed N.

Corollary 1. If in a domain R there is a polynomial cycle of odd length
n &#x3E; 1, then the equation x + y = 1 has a solution with x, y E U(R).
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Conversel y, if units x, y satisfy this equation then (0,1, x, 0) is a c ycl e of
t ength three, realized b y the polynomial

Proof. Assertion (i) of the lemma shows that if (0, 1 , z2 , ... ) is a normalized
cycle of odd length n, then X2 and 1 - X2 are units. The polynomial f is
the Lagrange interpolation polynomial realizing the cycle (0,1, x, 0). 0

Corollary 2. If there is a normalized cycle (0,1, ~2, ... , 0) of length
n &#x3E; 3 in a ring R and I is an ideal in R of norm N(I) = m  n, then
some non-zero element of that cycle lies in I.

Proof. The residue classes xi mod I (i = 0,1, 2, ... , n - 1) cannot be all
distinct, and if for some i &#x3E; j we have Xi - Xj E I, then by Lemma 1 (i)
the element xi-j lies in I. 0

Lemma 2. Let R be are integral domain.
(i) ([HKN2], Lemma 5) E R then {0,1,~,~,0) is a normalized

cycle of length 4 for a polynomials in R[X] if and only if the elements #, 1 -a,
a - /3, a/(l - (3) are units of R. If these conditions are satisfied then the
Lagrange interpolation polynomial realizing the cycle equals

where

(ii) ([NPe], Lemma 4) If there is a polynomial cycle of length 4 in R then
either R contains a root of the polynomial X2+1 or there exist units u, v, w
of R, distinct from 1, satisfying u + v + w = 1.

(iii) 3 be a prime and denote by L(R) the Lenstra constants of R.
There exists a cycle of length p in R if and only if p :5 L(R). If there is a
polynomial cycle of length n in R then adl prime divisors of n are bounded
by L(R).

(Recall that L(R) is defined as the maximal number n such that there exist
elements 0,1, x2, ... , of R whose all non-zero differences are units (see
[Len], [LN]).

Proof of (iii). The necessity of the stated condition is implied by Lemma 1
(i) and its sufficiency follows from the observation that the Lagrange inter-
polation polynomial for the cycle (0,1, x2, ... , xp_1, 0) has its coefficients
in R. The last part is a consequence of the trivial observation that if poly-
nomial f has a cycle of length n and din then the d-th iteration of f has a
cycle of length n /d. D
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Corollary 1. Let n be a positive integer and denote by p(n) the minimal
prirrze not dividing ~. If there exists a polynomial cycle of length rn in Q(n),
then the prime factors of m cannot exceed p(n).

Proof. Follows from part (iii) of the lemma and the observation that the
Lenstra constant of Q(n) equals p(n). D

Corollary 2. Let n be a positive integer. If a, b, c, d are non-zero integers
such that all prime factors of the product abcd divide n, (a, b, c, d) = 1, the
equation

is satisfied and moreover the ratio (b+ c)/(d + c) is a unit of Q(n) then

is a 4-cycle in the ring 
Conversely, every normalized 4-cycle in Q(n) leads to a solution of (1)

satisfying the above conditions.

Proof. The first assertion is a consequence of (i). To prove the converse let
(0,l,pi/~p2/~0) ((PI,P2,q) = 1) be a 4-cycle in Q(n). Then (i) implies
that the numbers p2/q, 1 - pl/q, (P2 - pi)/q and pI/(q - P2) are all units
of Q~n~. Thus the numbers a = q - pal, b = pi - P2, c = p2, d = -q lie in
Q~"~, satisfy (1), (b + c) / (d + c) = -pl/(q - p2) is a unit and (a, b, c, d) = 1
holds. 0

Corollary 3. If Q(n) contains two units 54 -1, -2 with difference 2, then
4 E C(n).

Proof. If A, A + 2 are units of Q~n~ then the assertion results from part (i)
of the lemma with Q!==1+A,/3=2+A. D

We shall utilize also a result of T. Pezda about cycles in p-adic rings:

Lemma 3 ([Pe, Theorem 2 (ii)]). Let Zp be the ring of integers of the p-
adic field Qp and put

The set of all lengths of polynomial cycles in Zp equals Ap if P &#x3E; 5 and

Corollary. If n has r &#x3E; 2 distinct prime factors, then the length of a
polynomial cycle in O(r2 log2,r).
Proof. If p is the smallest prime not dividing n, then p = O(r log r) and it
remains to observe that Q(n) C Zp. D
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The next lemma provides a method for constructing all non-equivalent
non-linear (i.e." not realizable by a linear polynomial) n-cycles in a domain,
provided one has a complete list of all normalized n-cycles. It is contained
implicitly in the proof of Theorem 2 of [HKN3].
Lemma 4. Let 17 = (0,1, Y2,... , Yn-l, 0) be a normalized non-linear n-

cycle in an integral domain R and let A be the deading term of the Lagrange
interpolation polynomials (of degree M, with 2  M  n - 1) realizing 77.
Let also be an n-cycle, whose normalization equals
77. Then for j = 1, 2, ... , n - 1 we have ~~ = yjxl and divides A.

Corollary. If the Lagrange interpolation polynomials. of all normalized
non-linear n-cycdes in a domain R have their leading coefficients invert-
ible, then every non-linear n-cycle in R is equivalent to a normalized cycle.

We shall also often use the easy fact (see e.g. [HKN2]) that if R is
a domain and a polynomial cycle in R is realized by a polynomial with
coefficients in R, then the Lagrange interpolation polynomial realizing that
cycle has its coefficients in R.

3. Now we describe the sets C(p) for prime p:

Theorem 1. If p is a prime then

Proof. If p &#x3E; 3 then Q(P) C Z2 and it follows from Lemma 3 that C(p) c
{1,2,4}. has in Q(3) the cycle
(-1,0,1,2, -1) it remains to show that in case p &#x3E; 5 there are no cycles of
length 4. If there would be such a cycle, then by Lemma 2 (ii) the equation
u + v + w = 1 would have a solution in units u, v, w of Q(P) distinct from
1. Write u = Elpa, v = E2pb and w = f2pc, with suitable rational integers

thus a &#x3E; 0. This shows that v + 2v must be a rational integer. The equality
v + w = 0 would lead to u = 1, which is not possible thus iv + wi ~ 1, and
hence, because of p &#x3E; 2, we get c &#x3E; 0. Since c &#x3E; 0 implies we must

have c = 0 and so finally

with b &#x3E; 0. In view of 2 we get b = 0 thus p = 3, which is a
contradiction.
We are thus left with the case p = 2. Since Q2 C Z3nZ5, Lemma 3

implies C(2) C {1, 2, 3, 4, 6}.
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Lemma 5. (i) All solutions of the equations u + v = 1 and u + v = 3 in
units of Q(2) are given by

and

respectively.
(ii) There are three normalized cycles of length 3 in Q(2), namely

The corresponding Lagrange interpolation pol ynomials are

(iii) Every cycle of length 3 in Q(2) is equivalent either to one of the
cycles given in (ii) or to one of the cycles

The corresponding Lagrange interpolation pol ynomials are

Proof. Assertion (i) is immediate, (ii) follows from (i) and Corollary 1 to
Lemma 1, whereas (iii) results from (ii) and Lemma 4. D

Corollary. If there is a cycle (0,1, x2, ... , ~5, 0) of length 6 in Q(2), then
there exist A, IL E {1/2, -1, 2} such that X4 = Az2 and x5 = 1 + ~C(x3 - 1).
Moreover x2 is eitker a unit of Q~2~ or is of the form 3e with a unit e and
the same applies to X3 - 1.

Proof. The assumption implies that (0,~2,~4,0) and (0, X3 - 1, 0)
are 3-cycles, hence it suffices to apply (iii). D

One can also easily list all 4-cycles in Q(2):
Lemma 6. (i) All solutions of the equation u + v + w = 1 in units of Q(2)
distinct from 1 are given by

(ii) There are three normalized cycles of length 4 in Q(2), namely
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and every 4-cycle in Q(2) is equivalent to one of them. The corresponding
Lagrange interpolation polynomials are

Proof. Write u = +2’, v = f26 and w = :i:2c with a &#x3E; b &#x3E; c. If u, v, w
are integers then clearly c = 0, w = -1 so u + v = 2 and dividing by 2
and applying Lemma 5 (i) we arrive at the solution u = 4, v = -2, w = 1.
If however w is not an integer, then c  0 hence all terms in u2-c +
v2-c t 1 = 2-c are integers and moreover must equal fl. Thus
u2-c + (-2-°) = ~2 and dividing by ip2 and using again Lemma 5 (i) we
obtain the remaining two solutions. This settles (i).
To obtain (ii) observe first that Equation (1) does not have solutions

a, b, c, d in Q~2~ with a + b = c + d = 0 such that (b + c)/(d + c) is a unit of
and then use (i), Lemma 2 (i), (iii) and the corollary to Lemma 4. 0

Now we shall prove that there are no 6-cycles in Q~2~. Assume thus
that (0,1, ~2?" - ? is such a cycle. The corollary to Lemma 5 shows that
with suitable units E, 77 we have x2 E le7 3el and X3 E {1 + q, 1 + 3q).
Moreover X4 = Az2 and x5 = 1 + 1) with A, it E {-I, 1/2, 2} and
from Corollary 2 to Lemma 1 we infer that X3 is divisible by 5. We have
four case to consider:

In cases (A) and (B) the difference X2 - 1 is a unit, hence Lemma 5 (i)
shows that x2 E {-I, 1/2, 2} and we get

Moreover in case (A) x3 - X2 = 1 + ~ 2013 6 is a unit hence using Lemma 6 (i)
we get

and we see that X3 = 1 + 7y is not divisible by 5, contradiction. Thus case
(A) cannot occur. The case (B) is also not possible, since x5 -1 = ~(x3 -1)
must be a unit, being associated to X4 = e/A, and so 3q = ~3 - 1 must be
a unit. This contradiction shows that the case (B) is not possible.
The impossibility of case (C) follows from the observation that x3 -1 = ~

must be associated to X2 = 3e.
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It remains thus to deal with case (D). Here E1 = x2 -1 = 3e-1 is a unit
and the equality

leads, in view of Lemma 5 (i) to e E {-1,1,1/4,1/2}, thus

Moreover E2 = X3 - X2 is also a unit, and in view of El + E2 = X3 - 1 = 377
we get

thus E.l/1J ~ {-1,1,2,4}. Since x3 = 1 + 3q we get thus 16 possibilities for
x3, however only in the following five cases X3 is divisible by 5:

So we are left with the following possible cycles:

Using the fact that z5 must be a unit and p E {-1,1/2,2} we see that in
al and a3 one has &#x3E; = 1/2, in a2 and a4 one has &#x3E; E {-I, 2} and in a5 one
has p = 2. Furthermore x4 - X3 is a unit and thus in al one has A = -1,
in a2 one has A = 1/2, in a3, a4 one has A E {-1, 2}, and in a5 one has
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A = -2. This leaves us with the following ten cases:

Now a short computation shows that the leading coefficients of the cor-
responding Lagrange interpolation polynomials are equal to 1/40, -52/35,
-4/5, -1/160, 1/35, -2/5, -2/35, 3/11, -2/5 and -417728/5355 respec-
tively, hence do not lie in Q(2). This establishes our claim. 0

4. Now we consider the case of odd composite n.

Theorem 2. If n is an odd composite number then either C(n) = {1,2}
or C(n) = ~1, 2, 4}. The second possibility occurs if and only if Equation
(1) has a non-trivial (i.e., without a vanishing subsum of the left-hand side)
solution in coprime integers a, b, c, d whose all prime divisors divide n and
moreover the ratio (b + c)/(d + c) is a unit of Q~n~.

In particular one has C(n) = {1, 2, 4} in the following cases:
(a) n is divisible by 3,
(b) n is divisible by a product u(u+2), where both u and u+2 are primes

or prime powers,
(c) n is divisible by a product u(2u db 1), where both u and 2u db 1 are

primes or prime powers.

Proof. The first assertion is an immediate consequence of Q~n~ E Z2 and
Lemma 1 (iii). To prove the second we use Lemma 2 (iii) and the following
simple lemma:

Lemma 7. If n is odd, then no solution of the equations (1) with a vanishing
subsurrc can lead to a 4-cycle in 

Proof. Let a, b, c, d be non-zero integers in Q~n~ satisfying a+b+c+d = 0 and
with (b + c)/(d + c) being a unit of Q(n). Assume also that c = -a, d = -b
and (a, b) = 1. Since a, b are both odd we may write



538

with r, s &#x3E; 1 and odd A, B. Our assumptions imply that (b - a)/(b + a) is
a unit of Q~n~ and thus we must have r = s. But this implies

contradiction. 0

Note that for even n this lemma fails, as the example n = 30 shows.
In that case (1) has two trivial solutions, given by 2 + 3 + (-2) + (-3) =
3 + 5 + (-3) + (-5) = 0 which satisfy the divisibility condition in Theorem
2 and thus lead to 4-cycles (0,1, 2/5, -3/5, 0) and (0,1, -1/3, -2/3, 0).
The last assertion of the theorem follows from the simple observation that

mln implies Q(’) C Q(n), thus C(m) C C(n). In case (a) it is sufficient to
recall that 4 E C(3), as shown in Theorem 1. In case (b) our condition for
the existence of a cycle of length 4 is satisfied with a = -u - 2, b = d = 1,
c = u and in case (c) that condition is satisfied with a = -(2u:l: 1), 7
b=d=u, c = :1:1. 0

A direct check shows that at least one of the conditions (a), (b), (c)
is satisfied by every square-free composite odd number below 100 except
65 = 5 .13, 77 = 7.11, 85 = 5.17 and 95 = 5 .19. We shall now show that
C(77) = C(85) = C(95) = {1, 2} and C(65) = {1, 2, 4}. For this purpose
we shall use the following result, which is an immediate corollary of the
main results of [MDT]:
Lemma 8. If n E {65, 77, 85, 91} then the only solutions, up to permuta-
tions, of in integers a, b, c, d composed of prime factors of n
are given by a = b = 13, c = -52, d = -1 for n = 65 b = -5,
c=-1, d = -19 forn=95.

One checks without difficulty that in case n = 95 the divisibility condi-
tion of Theorem 2 is violated, whereas in case ~e = 65 we have the cycle
(0,1,12/13, 25/13, 0) realized by the polynomial

It follows from known results about exponential diophantine equations
that for any given n there are only finitely many non-trivial solutions of
(1), i.e., solutions with no proper subsum of the left-hand side vanishing.
Hence one can use the existing bounds (see [MDT], [Sk]) for non-trivial
solutions of (1) to determine whether there is a 4-cycle in Q(n).

5. Our final example deals with C(2p) with prime p. Here we prove the
following result:
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There exists an effective procedure to distinguish between these cases for
any given prirne p.

Proof. At first we shall assume p &#x3E; 5 leaving for a while aside the case
p = 3. Observe that Q(2oS) C Z3 and for p &#x3E; 7 we have C Z3 n Z5.
Lemma 1 (iii) implies thus C(10) C {1, 2, 3, 4, 6, 9} and for p &#x3E; 7 we get
C(2p) C {1, 2, 3, 4, 6}.
The following lemma contains an algorithm leading to a list of all non-

equivalent cycles of length six and nine for a large class of domains. It
is in certain cases simpler than the algorithm which can be deduced from
[HKN3].
Lemma 9. Let R be a finitely generated integrals domain and assume that
we have a compdete list, say

of pairwise non-equivalent cycles of length 3 in R. Without restriction we

may assume, multiplying, if necessary, all elements of a cycle by a unit,
that if aj and ak are associated then they are equal.

(i) If

is a normalized cycle of length 6 in R, then there exists j and k such that
ai = ak and

where E = 1/u, 1] = -1/z, u is a solution of the unit equation u -I- v = aj,
and z is a solution of the unit equation z + w = (3k.

(ii) If

is a normalized cycle of l ength 9 in R, then there exist a unit e such that
1 - e is also a unit, and integers j, k, 1 such that aj = ak = al and

where El = 1/u, u is a solution of the equation u + v = a-j, e2 = -1/w,
w is a solution of the equation w + z = s is a solution of the equation
s + t = ,Ci~ and e3 = -e/s.

Proof. (i) Assume that ~ is a normalized cycle of length 6 in R. Then

(0, X2, X4, 0) is a cycle of length 3. It is equivalent to one of the cycles
in our list, hence with a suitable j and a unit e we have X2 = fO:j and
X4 = ~7- Also (l,x3,xs,l) is a cycle of length 3,which is equivalent to
the cycle (0, X3 - 1, X5 - l, 0), thus there exists k and a unit 77 such that
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X3 = 1 +qak and x5 = Lemma 1 (i) implies that A = x2-1 = 
and x5 = 1 + r¡(3k are both units, hence

and

It remains to establish the equality a~ = ak. Since by Lemma 1 (i) the
elements x3 -1 and x2 are associated we obtain the equality

with a certain unit u. This shows that a~ and ak are associated and our

assumption implies now 
(ii) Assume that ~ is a normalized cycle of length 9 in R. Then

(0, X3, X6, 0) is a cycle of length 3, hence with a suitable j and a unit el
we have X3 = claj and X6 = Elpj. Applying the same procedure to the
3-cycles (1, x4, x7,1) and we obtain the existence of integers
k, l and units E2, e3 such that

Lemma 1 (i) implies that X2 and 1- X2 are both units. Since X8 is a

unit, we get

with both summands being units and since X4 is also a unit we get

with unit summands. Finally = X3 - 1 =qX2 with a unit 17 and hence

again with unit summands. To obtain the equality a~ = ak = al it suffices
to observe that Lemma 1 (i) implies that the elements x3, x4 -1 and x5 - X2
are associated and thus a~ and ad are also associated. D

The last assertion of the theorem follows immediately from the first part
of the lemma and the observation that a complete family of non-equivalent
3-cycles in Q(’) can be determined using Corollary 1 to Lemma 1, Lemma 4
and an effective procedure of solving the equation u + v = 1 in units of any
finitely generated number ring (see [Sch]).
Our argument for the non-existence of 9-cycles in Q~2~~ did not cover the

case p = 5, so we have now to address this case.
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To obtain this we shall use the second part of the preceding lemma and to
do that we have to find first a complete system of non-equivalent 3-cycles.
This is done in a slightly greater generality in the following lemma:

Lemma 10. Let p be an odd prime and (0,1, a, 0) a normalized 3-cycle in
~~2P) . .

(a) If p &#x3E; 3 is a Fermat prime then

(b) If p is a Mersenne prime then

(c) If p = 3 then

(d) In all other cases a E {-1, ~,2}.
In case (d) the Lagrange polynomials realizing normalized cycles of length

3 are those given in Lemmas 5 (ii).
Proof. Lemma 2(i) shows that we have to determine all solutions of the
equation u + v = 1 in units of Q~2P~. Multiplying this equation be the
common denominator of u and v we get an equation of the form

and one sees easily that apart from the trivial case 1 + 1 = 2 this equation
is reducible to

It is well-known (see e.g. [Si], [Wa]) that this is possible only if either
Fermat prime, or p = 2y - 1 is a Mersenne prime, or

finally p = 3 and the solutions are 32 - 23 = 1, 22 - 1 = 3, 3 - 2 = 1. Now
note that each solution of (7) leads to the following companion solutions of
the unit equation u + v = 1:

It remains to write down all units appearing in these equations. In partic-
ular in case (d) the only solutions of the unit equation are 1/2 + 1/2 = 1
and 2 + (-1) = 1, leading to a = -1,1/2 and 2. 0

Corollary 1. If p &#x3E; 3 is neither a Fermat prime nor a Mersenne prime,
then in Q(2P) we have the following non-equivalent cycles of length 3:
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Proof. It follows from the lemma that the first three listed cycles form a
complete set of normalized 3-cycles in Lemma 5 (ii) implies that the
leading terms of the Lagrange interpolation polynomials are 3/2,3/2 and 3,
respectively, hence they have, up to a unit factor, only 1 and 3 for divisors
in Q~2P~. The assertion follows now from Lemma 4. D

The same approach leads to the following two assertions:

Corollary 2. If p = 22" + 1 &#x3E; 3 is a Fermat prime, then the list of all non-
equivadent cycles of lengths 3 in Q~2P~ consists of (0, 3, 3a, 0) (a = -1,1/2, 2)
and all cycles of the form (0, d, ad, 0) where a is a number listed in Lemma
10 (i) except a = -1,1/2, 2 and d is a divisor of p2 -~+ 1.

Corollary 3. If p = 2q - 1 is a Mersenne prime, then the list of all non-
equivalent cycles of lengths 3 in Q~2~~ consists of (0, 3, 3a, 0) (a = -1,1/2, 2)
and all cycles of the form (0, d, ad, 0) where a is a nurrcber listed in Lemma
10 (ii) except a = -1, 1/2, 2 and d is a divisor of p2 +p + 1.

Now we can dispose of 9-cycles in Q(10). Corollary 2 to the last lemma
shows that the set

forms a complete system of non-equivalent 3-cycles in Q )(10)
Let (o,1, x2, ... , XS, 0) be a normalized cycle of length 9 in Q(10) and let

be defined as in Lemma 9 (ii), thus a~ ~ {1,3,7,21}.
Lemma 11. One has aj = 21.

Proof. Since x2, x4, x5, X7 and X8 are units, hence by Corollary 2 to Lemma
1 we have 3 - 7~3:r6. Now (0,~3, is a 3-cycle which is equivalent to
some cycle listed in (9). Thus with some unit E and d, a listed in (9) we
have X3 = Ed, xs = aEd and as a is a unit we must have 3 - = 0

Lemma 12. The equation

has exactly three solutions in coprime positive integers x, y, z such that the
product xyz has onl y 2 and 5 , for its prime divisors. They are given by

Proof. In view of (x, y, z) = 1 at most one of the numbers x, y, z can be
divisible by 2 resp. 5, thus at least one of them must equal 1. By symmetry
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we may assume x &#x3E; y. Assume first z = 1. Then we have to solve the

following four exponential equations:

The first has X = 4, Y = 1 for its only solution, leading to 24 + 51 = 21
and the second has the solution 2 2.51 + 1 = 21. To solve the remaining two
equations one uses Theorem 3 of [MDT] which shows that the summands
in the left-hand sides of these equations do not exceed 294, so it suffices
to perform a simple computer check. It shows that the obvious solution
52 - 22 = 21 is the only one.

In the remaining case (y = 1, z &#x3E; 1) we have to consider the following
four equations:

However it follows from the table given in [Le] that none of these equations
has a solution. 0

Corollary. Numbers u, v E Q(10) which are solutions of the unit equation
u + v = 21 form the following set of six elements:

Proof. This follows from the observation that in every solution of (10) one
hasz=1. 0

Now we apply Lemma 9 (ii) which permits, with the use of the last
two corollaries to establish a list of all 9-tuples of elements of Q(10) which
may form normalized 9-cycles and a computer check shows that for all of
them the necessary condition given in Lemma 1 (i) is violated. Since the

polynomial

realizes the 6-cycle (0,1, 2, 3, 4, 5, 0) in one gets C(10) = {I, 2, 3, 4, 61.
0

6. It remains to consider the ring Q(6). Since it is contained in Z5 and
Z7 hence it follows from Lemma 3 that the lengths of polynomial cycles in
(~~6~ lie in the set {I, 2, 3,4,5,6,8, 10, 12}. Because of Q(2) C ~~6~ Theorem
1 implies the existence of cycles of lengths 1,2,3 and 4. The existence of
cycles of length 5 follows from the observation that the polynomial

has the cycle (o,1, 2, 3, 4, 0) .
We shall need certain simple results about unit equations.
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Lemma 13. (i) All solutions = 7z in positive integers x, y, z having
no prime divisor exceeding 3 and satisfying (x, y, z) =1 are given by

(ii) All solutions of x ± y = 13z in positive integers x, y, z having no
prime divisor exceedircg 3 and satisfying (x, y, z) =1 are given by

(iii) All solutions of x f y = 73z in positive integers x, y, z having no
prime divisor exceeding 3 and satisf ying (x, y, z) = 1 are given by

Proof. We use standard methods. Our assumptions imply that in our equa-
tions z + y = az (a = 7, 13, 73) one of the numbers x, y, z must be equal to
1. Consider first the case a E {7,13}. If z &#x3E; 1, thus y = 1 and a glimpse at
the tables provided in [Le] shows that the only solutions are 26 -1= 7 ~ 32,
33 + 1 = 7 ~ 22 and 22 ~ 3 + 1 = 13. If z = 1 then we have to solve the

exponential equations 12x + I = 7, 2X + 3y I = 13, 12x - 3y I = 7 and
~2X - 3y =13. The first two are trivial and the solution of the remaining
two is accomplished with the use of the main result of [MDT] which im-
plies that 3Y}  294, hence a short computer calculation suffices
to complete the list of solutions in cases (i) and (ii).

If a = 73 then the case z =1 is resolved in the same way as above, using
the bound given in [MDT]. If y =1 then we apply the standard procedure,
going back to St6rmer ([St]), of reducing exponential equations to Pell’s
equations. We have to solve the equations

Consider the first of them. If X, Y are both even, then putting u = 2X12
and v = 3Y~2 we get

Since the fundamental unit of the field Q( 73) equals 1068 -125B/73 hence
in every solution u, v of (13) the number v is divisible by 5, so 513, contra-
diction.

If X is odd and Y is even then write ~c = 2~X -1)~2 and v = 3Y~2, , thus
2u2 - 73v2 = :1::1 and (2u)2 -146v2 = ~2. Since the fundamental unit of
the field Q( 146) equals E = 145 + 12Ý146 and the only prime ideal of
norm 2 of that field is principal and generated by ~ = 12 - 146 we get
2u + v 146 = :I::~(145:1: 12ý146)N with N = 0, 1, 2, .... For N = 0 we get
u = 6, v = 1 which provides us with the solution 2~ - 32 + 1 = 73 and one
sees easily that for positive N we get 12~v, thus v cannot be a power of 3.
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If X is even and Y is odd, a similar procedure leads us to the equation
u2 - 3 - 73v2 = fl with v being a power of 3. However this is not possible
as the fundamental unit of the field equals 74 + 5B/219 and this
forces v to be divisible by 5.

Finally let both X and Y be odd. Then we are led to the equation
2u2 - 3 - 73v2 = ~l, thus (2~)2 - 438v2 = ~2, hence 2u + v 438 is an
integer of norm 2 or -2 in the field Q(,/43-8). This is however not possible
as the only ideal of norm 2 in this field is non-principal.

It remains to consider the second of the equations (14). If X,Y are both
even then it reduces to Equation (15) with v being a power of 2 but we
have seen already that any solution of (15) satisfies 51v. If X is odd and
Y is even then we are led to 3u2 - 73v2 = fl, hence (3u)2 - 219u2 =
t3 but the only ideal of norm 3 in the field C~( 219) is non-principal,
making the last equality impossible. If X is even and Y is even then we get
u2 - 146v2 = fl with v = 2~Y-1»2. But the fundamental unit of Q( 146)
equals f = 145 + 12V-14-6, hence 31v, contradiction. Finally let both X and
Y be odd. Then we get 3u2 - 2. 73v2 = fl and (3u)2 - 438v2 = ~3. Since
the fundamental unit of l~( 438) equals 293 + 14 438 and the only ideal
of norm 3 is generated by ~ = 21 + 438 we must have

Denote by P the unique prime ideal in the field Q(ý438) dividing 73.
Then 438 - 0 (mod P) and 293 - 1 (mod P) thus 3u - t21 (mod P),
3u - ~21 (mod 73) and u - f7 (mod 73). This is however not possible,
as no power of 3 is congruent to f7 mod 73. This concludes the proof of
the lemma. 0

Corollary. (i) Numbers u, v E which are solutions of the unit equation
u + v = 7 form the following set of 14 elements:

(ii) Numbers u, v E Q(6) which are solutions of the unit equation u + v =
13 form the following set of six elements:

(iii) Numbers u, v E Q(6) which are solutions of the unit equation u+v =
73 form the following set of six elements:

Proof. Follows from the observation that u = xlz, v = y/z, where ~, y, z
are given in the corresponding part of the lemma. D

Lemma 14. There are no cycles of length 6 or 12 in (~~6~.
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Proo, f. Lemma 10 provides us with a list of all normalized cycles of length
three and to deduce the list of all non-equivalent such cycles with the use of
Lemma 4 we have to find the leading coefficients of polynomials realizing the
normalized cycles. A simple application of Corollary 1 to Lemma shows that
these coefficients form the set {I, 7, 13, 73}. This implies that a complete
set of non-equivalent 3-cycles in C~~6~ is given by

where by A we denote the set of numbers listed in Lemma 10(c).
It suffices now to perform the algorithm given in Lemma 9 (i), all prelimi-

nary information being contained in the corollaries to the preceding lemma.
This has been made by a Pascal program, which checked the 257 985 can-
didates for a 6-cycle and found that only six of them satisfy the necessary
conditions given in Lemma 1 (i). However it turned out that their Lagrange
interpolation polynomials do not have all coefficients in the ring Q~6~, in
fact, in each case at least one coefficients has its denominator divisible by
seven. The non-existence of 6-cycles obviously implies the non-existence of
cycles of length 12. 0

We need to have a list of all solutions of the equation a + b + c + d = 0
in integers a, b, c, d whose prime divisors lie in {2,3} under the conditions

Since at most two of the numbers a, b, c, d can be divisible by 2 resp. 3
one sees easily that this task consists in finding all solutions in nonnegative
integers of the eleven following equations:

under the condition that no cancellation occurs. We shall call non-trivial

every solution satisfying this condition.
Fortunately all solutions of these equations are known:



547

Lemma 15. (i) ([Pil) All non-trivial solv,tions of Equation (15) in non-
negative integers are given by

(ii) ([Pi]) All non-trivial solutions of Equation (16) in nonnegative inte-
gers are given by

(iii) ([Pi], [Wg], Theorem 2) All non-trivial solutions of Equation (17)
in nonnegative integers are given by

(iv) ([Pi], [Wg], Theorem 1) All non-trivial solutions of Equation (18) in
nonnegative integers are given by

(v) (Known essentially since medieval times, see e.g. [Al], Lemma 2.1)).
Equation (19) has

for its only solutions.

(vi) ([AFl], Lemma 3.2; [TW], Theorem 2) All non-trivial solutions of
Equation (20) in nonnegative integers are given by

(vii) ([A2], Lemma 2.3; [TW], Theorem 3) All non-trivial solutions of
Equation (21) in nonnegative integers are given by

(viii) ([AF2],Theorem 1-A.1; [Wg], Theorem 3) All non-trivial solutions
of Equation (22) in nonnegative integers are given by
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(ix) ([AF2], Theorem 2.A.2; [Wg], Theorem 4) All non-trivial solutions
of Equation (23) in non-negative integers are given by

(x) ([AF2], Theorem 2.A.3; [Wg], Theorem 5) All non-trivial solutions
of Equation (24) in nonnegative integers are given by

(xi) ([TW], Theorem 1; [Sk], Theorem 3) All non-trivial solutions of
Equation (25) in nonnegative integers are given by

To obtain all possible normalized 4-cycles in Q~6~ a computer test was
made to check which solutions of the equation (1) implied by the preceding
lemma satisfy the condition stated in Lemma 2 (iii). Finally the computer
used Lemma 4 to obtain a complete set of pairwise non-equivalent 4-cycles.
It turned out unexpectedly that all non-zero elements of normalized 4-cycles
are units of Q(6). The calculations are summarized in the following lemma:
Lemma 16. (i) There are 114 distinct normalized 4-cycles cycles in Q~6~ .
All non-zero terms of these cycles are units of Q(6), the corresponding La-
grange polynomials are all of degree 3 and the ideals of Q~6~ generated by
the leading coefficients of these polynomials have the form aQ(6) with

(ii) There are 8 distinct non-normalized 4-cycdes in ~~6~ containing 0.
Lemma 17. There are no cycles of length 8 in Q(6).
Proof. Assume that (0,1,~2~3?" - X7, 0) is a cycle of length 8. According
to Corollary 2 to Lemma 1 for some i xi is divisible by 7. We shall now show
that this implies 7~4. Observe first that the sequence (O,1, x4/x2, xs/x2, 0)
forms a normalized 4-cycle, thus by Lemma 2 (i) E = must be a unit
and by Lemma 1 (i) the same applies to q = x4/(xs - x2). If thus X2 is
divisible by 7 then 7 divides X6 = ez2 and hence also X4 = 77(X6 - X2)- If
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however ~2 is not divisible by 7 then 7 does not divide X6 and hence it
must divide X4. Now note that (0, X2, X4, X6, 0) is also a 4-cycle and hence
by Lemmas 4 and 16 we must have X4 = ~u, where ~ is a unit and u2
divides the leading term of the Lagrange polynomial corresponding to one
of the cycles determined in Lemma 16. That lemma shows that this can
happen only if u is either a unit or is associated with 5, since 52 is the only
non-squarefree number listed in (26). Thus X4 cannot be divisible by 7,
contradiction. ll

It remains to exclude the possibility of a cycle of length 10 in Q(6).
Lemma 18. (i) There are 240 normalized 5-cycles in Q~6~. In five cases
the corresponding Lagrange interpolation polynomials care cubic, in the re-
mdining cases they are quartic.

(ii) Every non-normalized 5-cycle containing zero in by a
unit factor from one of the normalized 5-cycles.

Proof. The first part is pure computing, based on Lemma 2 (ii). To prove
the second one has to observe that the principal ideals in generated
by the leading terms of the quartic polynomials realizing 5-cycles do not
have any non-trivial fourth power divisors, and the leading terms of cubic
polynomials realizing 5-cycles are all units of Q~6~. Thus (ii) follows from
Lemma 4. 0

It has been shown in [Mo] that no quadratic polynomial with rational
coefficients can have a cycle of length four in the rational field and one could
naively conjecture that a rational polynomial of degree N cannot have a
cycle of length N+2 in the field of rationals. The five polynomials in the last
lemma refute this hope. In particular the polynomial 3X3 - 2X2 + 6X + 1
has the 5-cycle (0,1, -1/3,1/3, 2/3, 0).

Corollary. There are no cycles of length 10 in 

Proof. Assume that 6 = (0, ~i, ~ ~3?." i X97 0) is a 10-cycle in Q(6). Multi-
plying all elements of it by a suitable power of 2 and 3 we may assume that
all ~Z are integers. As (0, X2 X4, ~s, xs, 0) is a 5-cycle in Q~s~, part (ii) of the
lemma shows that it is equivalent to a normalized cycle, hence Lemma 2 (ii)
implies that ~2?~4?~6?~8 are all units of Q~s~. By Corollary 2 to Lemma
1 some non-zero elements of 6 must be divisible by 5 and as are

units, we get 51xs and similarly so finally 351x.5, so x5 = 35N with
some integer N. Now observe that (~5,~7,~9,1,~3,~5) is a 5-cycle, thus

is a 5-cycle containing 0. Since all non-zero elements of a 5-cycle are units,
the same applies to non-zero elements of 17. Hence
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holds with suitable units fie Note that ei are integers.

Lemma 19. (i) If a number in Q(6) has at least two distinct representa-
tions as a sum of two units then the principal ideal that it generates has
the form NQ (6) with

(ii) The number 35 has three distinct representations as a sum of two
units of Q(6), namely

Proof. (i) Let 0  a E Q(6) and assume that with suitable fi, fli E 11, -1 ~
and integral x, y, z, w, s, t, r, q one has

Multiplying both sides by suitable powers of 2 and 3 we may assume that
all exponents on the right-hand side are non-negative, the left-hand side al
is an integer, generating in ~~6~ the same ideal as a and min(z, z, s, r} = 0.
Subtracting we get an equation of the form a + b + c + d = 0 with integral
a, b, c, d E Q~6~ satisfying (a, b, c, d) = 1. This is an equation having one of
the form considered in Lemma 15 hence that lemma provides us with a list
of all solutions and now it is a trivial computer task to list all ideals which
can be generated by al , hence also by a.

(ii) A simple computer calculation on basis of the list of solutions given
in Lemma 15 shows that there are no other representations of 35 as a sum
of two integers invertible in ~~6~ . It remains to show that there is no such a
representation with non-integral summands. If there is such representation
then it must have the form 35 = +a + ~b with either a = 2"/3 k, b = 3Y/21
or a = 2~/3~, b = 1/213~ or finally a = 3x /2k, b = 1/2l3’’~ (with x, y, k, I, m
being non-negative integers). In the first case we get

which is possible only if k = I = 0. In the second case, if k  m then we

get 35. 3m = ±2’3’-k ± 1 and if k &#x3E; m then 35 ~ 3~ = ~2~ ~ 3k-m. This
forces in both cases k = m and thus 35 - 3 k = ~2~ ~ 1, but it follows from
[Le] that this equation has no solutions. The third case can be handled
similaxly. 0

Corollary. If a E Q(6) is divisible by 35 and has at least two representa-
tions as a sum of two units then a = 35 with integral k, l.

Proof. It suffices to observe that 35 is the only element of the list (28)
divisible by 35. Cl
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If the representations given in (27) of 35N as a sum of two integers
invertible in ~~6~ all coincide, then, in view of xi 34 x, (i = 3, 7, 9),
we must have E3 - f7 = xZ thus El - x3 - X7, which is clearly im-
possible. Hence there must be at least two distinct such representations
and the corollary to Lemma 19 shows that N is a unit and using the
equalities (27) and Lemma 19 (ii) we see that for i = 1, 3, 5, 7 one has
Xi E -N, 3N, 8N, 27N, 32N, 36N. However by Lemma l(i) the differ-
ences Xi - xl are units for i = 3, 5, 7 but a direct calculation shows that
this is not possible. This shows that there cannot be a polynomial cycle of
length 10 in Q~6? . D
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