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From Planck to Ramanujan:
a quantum 1/f noise in equilibrium

par MICHEL PLANAT

RÉSUMÉ. J’introduis un nouveau modèle de bosons thermiques
sans masse ; il prédit, pour les fluctuations, un spectre hyper-
bolique aux basses fréquences. On trouve que la fonction de par-
tition par mode est la fonction génératrice d’ Euler pour le nom-
bre de partitions p(n). Les quantités thermodynamiques ont une
structure arithmétique profonde : elles sont données par des séries,
dont les coefficients de Fourier sont les fonctions sommatoires

03C3k(n) des puissances des diviseurs de n, avec k = 20141 pour l’énergie
libre, k = 0 pour le nombre de particules, et k = 1 pour l’énergie
interne. Les contributions de basse fréquence sont calculées par
l’usage de transformées de Mellin. En particulier, l’énergie interne
par mode diverge comme E/kT = 03C02/6x, avec x = h03BD/kT, au contraire de
l’énergie de Planck E = kT. La théorie est appliquée à la correc-
tion de la loi de rayonnement du corps noir et au solide de Debye.
Les fluctuations fractionnaires de l’énergie présentent un spectre
en 1/v aux basse fréquences. On en déduit un modèle satisfaisant
pour les fluctuations d’un résonateur à quartz. On rappelle aussi
les résultats essentiels de la théorie mathématique des partitions
de Ramanujan-Rademacher.

ABSTRACT. We describe a new model of massless thermal bosons
which predicts an hyperbolic fluctuation spectrum at low frequen-
cies. It is found that the partition function per mode is the Euler
generating function for unrestricted partitions p(n). Thermody-
namical quantities carry a strong arithmetical structure: they are
given by series with Fourier coefficients equal to summatory func-
tions 03C3k(n) of the power of divisors, with k = -1 for the free
energy, k = 0 for the number of particles and k = 1 for the in-
ternal energy. Low frequency contributions are calculated using
Mellin transform methods. In particular the internal energy per
mode diverges as E/kT=03C02/6x with x =h03BD/kT in contrast to the Planck
energy E = kT. The theory is applied to calculate corrections
in black body radiation and in the Debye solid. Fractional en-

ergy fluctuations are found to show a 1/03BD power spectrum in the
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low frequency range. A satisfactory model of frequency fluctua-
tions in a quartz crystal resonator follows. A sketch of the whole
Ramanujan-Rademacher theory of partitions is reminded as well.

1. Introduction

According to the equipartition law of statistical mechanics, the available
noise power P in the frequency interval dv is equal to [15]: this result
is essentially Nyquist’s theorem for the voltage noise v2 at a resistor R,
, 

P - 

= kTdv where means the avera e value. Since 
- 

kT isi.e., 4R = kTdv, where () means the average value. Since 2? = kT is
the mean energy per mode, Nyquist proposed to add quantum corrections
as E = p(x), with the Planck factor p(x) = which x = hv/kT .kT 

_ 
exp ( -1

This result was generalized as FT- = p(x) + to account for the zero point
energy. There are still controversies concerning the physical relevance of
these relations: the Planck factor removed the ultraviolet divergence but
this was reincorporated in the frame of quantum electrodynamics ~1~,~4~.

At the present stage, quantum statistical mechanics does not include
infrared corrections of the 1/v type. The infrared catastrophe was studied
previously in non-stationary processes such as the scattering of electrons in
an atomic field [3],[9].

Here we derive an alternative approach in which 1/v noise is a property
of non-degenerate bosons in equilibrium. We first observe that the quantum
mechanical partition function of a boson gas, with equally spaced energy
levels, is the Euler generating function of p(n) : the number of indiscernible
collections of the integer n. It relates to elliptic modular functions which
are very exactly known. As a result the main contribution in the mean

energy per mode is the infrared term t - M2- instead of unity. The newkT 
- 

6
law also leads to fractional energy fluctuations of the whole gas.

Using the new approach and the density of states of the conventional ap-
proach we calculate the corrections to black-body radiation laws, including
the density of photons, the emissivity and infrared fluctuations. We also
apply the calculations to the phonon gas in a quartz resonator.
The partition function Z of a non degenerate boson gas is given from

where the summation is performed over all the states s of the assembly. In
the conventional approach it is thus considered that the partition function
Z per mode of frequency es = hvs is such that ln Z = - 
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In black-body radiation one accounts for the wave character of the quan-
tum states by counting the number I of wavelengths in a cubic box of size L

where the summation (1) should be performed over all integers II, 12, 13
obeying (2).

This can be achieved by removing the discreteness of energy levels and
replacing the sum (1) by an integral

with D(v) = 2 x the density of states [11]: the factor 2 occurs due
to the two degrees of freedom of polarization, c is the light velocity and
V = L3 the volume of the cavity.
From now we consider that with each mode is associated a set of equally

spaced energy levels nhv, n integer, so that the partition per mode becomes

As shown in Section (2.1) this accounts for new multiparticle microstates
not considered so far.
The summation above is well known in number theory and can be very

accurately described using elliptic modular functions. At is will be shown,
there are drastic consequences in the low frequency part of the spectrum,
while the high frequency part is left unchanged.

In the following the thermodynamical quantities will be defined as usual

the occupation number,

the internal energy,

the entropy,

-, the spectral energy density,

, the free energy,

the fluctuations of the internal energy.

In all the paper the subscript - will indicate that we restrict the calculation
to one single mode.
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2. Thermodynamics of the Euler gas

2.1. Euler generating function. The partition function per mode Z in
(4) can be written in the Euler form [14]

with y = and 2? = This is equivalent to the Boltzmann
summation

where p(n) is the degeneracy parameter of the energy level nhv. It is known
in number theory as the number of unrestricted partitions of the integer n,
that is the number of different ways of calculating n as a sum of integers.

For example with n = 4 we have p(4) = 5 and the corresponding indis-
cernible collections are

This can be pictured in terms of the energy levels. The collection (a)
means one particle on the level of index 4 and the three remaining particles
on the ground state of index 0, i.e. 4hv = 1 x 4hv + 3 x Ohv. This
collection is the only one considered in the conventional approach. The
other microstates from (b) to (d) correspond to different possibilities of
bunching of the particles. Collection (b) means the four particles on the
level of index 1, i.e. 4hv = 4 x hv, collection (c) means two particles on the
level 2 and two particles on the ground state, i.e. 4hv = 2 x 2hv + 2 x Ohv,
and so on.

Properties of Euler generating function were studied in full details by
Ramanujan [10] in 1918 and completed by Rademacher [14] in 1973. An
important result is the asymptotic formula

2.2. Riemann zeta function and the free energy of the Euler gas.
The partition function 2(x) defined in (4) is related to the Riemann zeta
function ((s) through the Mellin transform as follows (Ref. [12], Eq. (6.3)
p. 464)
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Introducing as the sum of kth powers of the divisors of n and the
Dirichlet series

and computing the inverse Mellin transform one obtains ([12], p. 467) the
free energy F as follows

with = Ql(n)/n. There is thus a close relationship between the
arithmetic of and that of divisors. This will be confirmed in the
derivation of the other thermodynamical quantities.

Since the main contributions to Z(x) are given by the poles at s = 0 of
r(s) and ~(s+1) and at s = 1 of C (s), the free energy may be approximated
in the low frequency part of the spectrum ([5], p. 58)

with the error term ln(1 - 
2.3. Dedekind eta function and the internal energy of the Euler

gas. One easily shows that the Mellin transform of the occupation number
is r(s)~(s)2. A similar derivation to the one performed in Section

(2.2) leads to

In the low frequency region one gets (see [6], p. 27)

where 0.577 is Euler constant.

The Mellin transform of the internal energy is r(s)~(s)~(s -1) and
from the same method than above

An alternative derivation involves elliptic modular aspects. According to
Ninham [12]: All rrcathematics is a tautology, and all physics uses mathe-
matics to look in different ways at a fundamental problem of philosophy -
how to bridge the discrete and continuous.
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The link between the modular group and the Euler generating function
is from the equality [14]

where the domain of integration of Z(y) is taken to be the upper half

complex plane of the new variable T

Here we have

As shown in Section (5) Dedekind eta function acts on the full modular
group SL(2, Z). At this stage we do not enter into the full ramifications
of the theory and only emphasize the connexion to the modular Eisenstein
function

where the summation is performed over all non-zero relative integers m and
n and 9(r) &#x3E; 0. It can be shown ([16], p. 29) that G2(T) connects to the
logarithmic derivative of q(T)

- - I I , , , ’"

with the Fourier expansion

Using (22), (23) and (25)-(27) the relation (21) is easily recovered.
The low frequency expansion of internal energy is as follows

instead of the Planck result E - kT.
One can also compute the entropy S from

At very low frequency it results that the internal energy equals the op-
posite of free energy and half the entropy.
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3. Application to black-body radiation

3.1. Stefan-Boltzmann constant revisited. The Stefan-Boltzmann
constant is an integrated measure of the emissivity of a black body [11].
In the conventional approach the partition function is calculated from the
integral (3) using the density of states D(v) = 8~ that is

with ((4) = 7r4 /90 and we used the Mellin integral formula

The Stefan-Boltzmann constant CRSB is defined from the free energy

If instead of (30) one uses the general formula

the interchange of the integral and the sum leads to

As a result we find a free energy (and a modified Stefan-Boltzmann con-
stant) in excess with a factor = ((3) ~ 1.20. If one uses the
alternative derivation in terms of the divisors one recovers the mathemati-
cal formula (16) with s = 3 and k = -1.

3.2. The density of photons. The number of photons in the bandwidth
dv is

with the occupation number N(v, T) = in the conventional

approach. Integrating one gets per unit volume
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In the general approach the occupation number is defined from the sum-
mation (19) and we need to evaluate

This is in excess of a factor ((3) ~ 1.20 as for the free energy. If one

compares the calculation in terms of divisors one recovers the mathematical
formula (16) with s = 3 and = 0.

3.3. Planck radiation formula revisited. The energy within the band-
width dv is defined as

with E(v,T) = in the conventional approach and with
u(v,T) the energy spectral density. We get the Planck radiation formula

The black-body emissivity is defined as

At very low frequency the conventional result leads to the Rayleigh-Jeans
formula

which is independent of Planck constant and is proportional to the inverse
of the square of wavelength A = c/v.

In the new approach the emissivity is

At very low frequency one uses (28) with the result

Thus the v2T dependence is replaced by the vT 2 dependence, the low
frequency emissivity now depends on the Planck constant and on the inverse
wavelength; there is a ratio 7’2between the new result and the one predicteds

by the Rayleigh-Jeans formula.
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3.4. Radiative atomic transitions. Let us now consider the equilibrium
between atoms and a radiation field, allowing the emission or absorption of
photons of frequency

where 62 = hv2 is the energy in the upper state and f¡ = in the lower

state.

The conventional theory, as derived for the first time by Einstein[l 1],
states that the rate at which atoms make a transition 1 --3 2 in which one

photon is absorbed is equal to the rate at which atoms emit photons, so
that

where Nl and N2 are the occupation numbers of atoms in levels 1 and 2,
A21 is the spontaneous absorption rate, B12 is the induced emission rate
and u(v) is the energy density in the radiation field as given in (39).

In thermal equilibrium the occupation numbers in states 1 and 2 obey
the Boltzmann law

Using (46) and (39) one gets the well known formulas

where A = c/v is the wavelength of the radiation field.
If one uses the general formula one gets low frequency corrections in

the spontaneous to stimulated emission ratio. Using the low frequency
expression (28) for the internal energy this yields

The A/B low frequency ratio now depends on the inverse of the square of
wavelength A and is independent of the Planck constant ~, in contrast to
the hi À3 dependence of the standard ratio. The spontaneous to stimulated
absorption rate is enhanced a factor ’ 2over the conventional one.6x

3.5. Einstein’s fluctuation law revisited. According to the conven-
tional Einstein’s approach [13] the energy fluctuations of a system in equi-
librium within a larger system of temperature T are
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One can reformulate this relation for the fluctuations of the energy dE =

u(v,T)dv in the bandwidth dv

with u the energy spectral density and Su (v) the power spectral density of
the fluctuations of u. One gets([13], p. 429 )

The first term on the right hand side is the one corresponding to the high
frequency part of the spectrum (Wien’s law): it is of a pure quantum nature
and is corpuscular-like; the second one corresponds to the low frequency
(Rayleigh-Jeans) region: it is purely classical and wavelike. In the low

frequency part of the spectrum they are fractional energy fluctuations of
the random walk type

In the new approach one uses the low frequency energy density u(v, 
4~ v~ so that instead of (52) one gets

This is the announced quantum 1/v fluctuation spectrum. There is a re-
duced low frequency noise and the ratio between the new result and the
Einstein-Rayleigh-Jeans one is ~.

4. Application to a phonon gas and to the 1/ f frequency noise
of a quartz resonator

4.1. The specific heat of a phonon gas revisited. The properties of
the phonon gas are quite similar to those of the photon gas except for the
new form of the density of modes as g(v) - with 3 = 2 1 where

cph ph t 1
cph represents the average wave velocity and ct and cl are the transverse and
longitudinal velocities for an isotropic solid [11]. The maximal vibrational
frequency Vm (Debye frequency) is defined from the total number of allowed
quantum states

where No is the number of atoms in the volume V.
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In the conventional theory [11] we get

The internal energy follows from the formula

and the constant volume specific heat Cv = equals

the Debye function, and xm - flp, with
---

; the Debye characteristic temperature.
The case D(0D) - 1 corresponds to the Dulong-Petit value Cv -

3R. At very low temperatures one gets the cubic temperature dependence

In the new approach

Debye results are found unchanged except for an extra multiplicative factor
in the specific heat as was the case for the integrated emissivity in Section
(3.1) that is

At very low temperatures the electronic contribution to the specific heat
which decreases as T, dominates the lattice contribution, which decreases
as T3. This is accounted for in the conventional way.

4.2. 1 /f noise in a quartz resonator. Specific heat is involved in the
energy fluctuations of a canonical ensemble from the relation

The relative energy fluctuations follows as 2013y == which is of theE7 3No

order 10-11. The Avogadro number equals No = 6.02 x 1023 .
For energy fluctuations in the bandwidth dv, the main difference with

the conventional theory lies in the low frequency region, as was the case of
the photon gas. We find the quantum 1/v formula
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The method can be used to predict fractional frequency fluctuations in a
quartz crystal resonator from the formula ~[7]-[8]

where a; and Q are the frequency and quality factor of the resonator. Using
cph - 3.5 x 103 m/s, we find Aph - 5 x 10-4. For a 5 MHz P5 quartz
crystal resonator with Q - 2 x 106, the active region under the electrodes
has thickness t = 5A/2 - 3 mm, and section S N 3 cwn2, that is V - 1 cm3.
The resulting 1/v factor is h-1 = A h 102 6 X lO-24. This is the

order of magnitude found in experiments [7].

5. R.amanujan-R,ademacher theory of partitions:
a short reminder

Besides the low frequency approximations encountered in Section (2)
there is a an exact method to calculate the number of partitions p(n) first
discovered by Ramanujan [10] and improved by Rademacher [14] thanks to
an integration along Ford circles in the complex half plane. For complete-
ness we remind here the main points of the theory from which the results
in Section (2) may also be derived .
From well-known mathematical arguments [10] (p. 113) one can get the

leading term for the case 0  y  1 and y -3 1 from the expression

The use of y = exp(-hv/kT) corresponds to the low frequency approxima-
tion at v - 0, that is 1 - y = 1 - hvlkt. This leads to
the leading low frequency term in the free energy (18) and internal energy
(28).
They are similar formulas associated with rational points which are lo-

cated at

on the unit circle Iyl = 1. The leading term in the expansion of Z(y)
corresponds to the fundamental mode 2 - 1*
The general method to compute rational contributions is a master piece

of the mathematics of the 20th century([10]), ([14) . It uses the connection
of Z(y) to the elliptic modular functions.

I To establish the formula one writes the equation for a lossy harmonic oscillator and one
postulates that the 1/v fluctuations are present in the loss coeflicient.
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5.1. The fundamental contribution. To compute the contribution of
the fundamental point 1/1 of the unit circle Iyl = 1 one uses the property
((2), p. 96, [5],p.58)

In the low frequency region y = exp( -z) - 1 so that = 0

and 2(y) , 1. Low frequency approximations of the free energy (18) and
of the internal energy (28) follow. There are similar formulas associated
with the other rational points of the circle as shown below.
To get the leading term in p(n) one uses the Cauchy formula

where i means an arbitrary closed loop encircling the origin.
Substituting (65) in (66) with 2(y’) = 1 one can obtain

This includes (14) in the limit n - oo but is much more accurate.

5.2. Farey contributions and Ford circles. From now on we extend
the domain of definition of Z(y) to the complex plane and we introduce the
new variable T and the Dedekind eta function as defined in (22)-(24).

It can be shown that is a modular form of degree -1/2 on the
full modular group. It acts on the generators of such a group through the
relations [2] 2

To express the partition function one uses the Cauchy formula

In the third term above this corresponds to a path of unit length starting
at an arbitrary point in 7~.

2For more general modular transformations, we have

with E a 24th root of unity related to Dedekind sums as defined in (79). See [14], p. 160.
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The choice of the integration path comes along in a natural way by using
the connection of 2(y) to the modular group. Let us observe that the set
of images of the line T = X + i, X real, under all modular transformations

can be written as

Equation (71) defines circles C(p, q) centered at points T = Q + 2~ with
radius 1/2q2. They are named after L. R. Ford who first studied their prop-
erties in 1938 (14~. Ford circles are easily generated by using the ordered
Farey sequence

To each P belongs a Ford circle in the upper half plane, which is tangent
to the real axis at T - Q . It can be observed that Ford circles never

intersect. They are tangent to each other if and only if they belong to
fractions which are adjacent in some Farey sequence.

If q  q are three adjacent fractions in a Farey sequence then1 q q2

C(p, q) touches C(pl, ql) and C(P2, q2) respectively at the points

where

In Rademacher’s approach (which improves Ramanujan’s one) the unit
length path on 1-£ is chosen so as to go along Ford circles

where is the upper arc on a Ford circle which connects points of tangency
at T 9 and 7~.

Each Ford circle C(p, q) is labelled by the expression r = 9 + (, where
the variable ( runs on an arc of the circle ~~-2~~ - 2~. If one uses z such
that ( = ~, a Ford circle is mapped onto the circle = 2 and (75)
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FIGURE 1. Rademacher’s path of integration.

transforms as

where and R follow from (73).
5.3. Farey contributions and Dedekind sums. To compute (76) one
uses the transformation formula (22). After some manipulations and us-
ing z/q instead of z (see Ref. [14], p. 269), one gets the formula which
generalizes (65)

with
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The so-called Dedekind sums s(p, q) are introduced by

where [ ] in (79) denotes the integer part.
For the calculation of p(n) one uses an approximation similar to the one

used in (65). If z is a small positive real number, then y is near 
the modulus at that point = 0 and 2(y’) - 1.
As a result (76) can be readily integrated and the final result is

The physical meaning of these higher modes has still to be understood.
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