On considère la représentation d'un polynôme a plusieurs variables comme une somme de polynômes à une variable en combinaisons linéaires des variables.
One considers representation of a polynomial in several variables as the sum of values of univariate polynomials taken at linear combinations of the variables.
@article{JTNB_2002__14_2_647_0, author = {Schinzel, Andrzej}, title = {On a decomposition of polynomials in several variables}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {647--666}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, mrnumber = {2040699}, zbl = {1067.11012}, language = {en}, url = {http://archive.numdam.org/item/JTNB_2002__14_2_647_0/} }
TY - JOUR AU - Schinzel, Andrzej TI - On a decomposition of polynomials in several variables JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 647 EP - 666 VL - 14 IS - 2 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_2002__14_2_647_0/ LA - en ID - JTNB_2002__14_2_647_0 ER -
Schinzel, Andrzej. On a decomposition of polynomials in several variables. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 647-666. http://archive.numdam.org/item/JTNB_2002__14_2_647_0/
[1] The polynomial method and restricted sums of congruence classes. J. Number Theory 56 (1996), 404-417. | MR | Zbl
, , ,[2] On nonlinear functions of linear combinations. SIAM J. Sci. Stat. Comput. 5 (1984), 175-191. | MR | Zbl
, ,[3] A 'Waring's problem' for homogeneous forms. Proc. Cambridge Philos. Soc. 65 (1969), 663-672. | MR | Zbl
,[4] Waring's problem for binary forms. J. Pure Appl. Algebra 80 (1992), 29-45. | MR | Zbl
,[5] Inverse system of a symbolic power II. The Waring problem for forms. J. Algebra 174 (1995), 1091-1110. | MR | Zbl
,[6] Optimal reconstruction of a function from its projections. Duke Math. J. 42 (1975), 645-659. | MR | Zbl
, ,[7] A treatise on the theory of determinants. Dover, 1960. | MR
,[8] Sums of powers of complex linear forms, unpublished manuscript of 1992.
,