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An explicit formula for the Mahler measure
of a family of 3-variable polynomials

par CHRIS J. SMYTH

To Michel Mendis .France on the occasion of his 65th birthday

RÉSUMÉ. On montre une formule explicite pour la mesure de
Mahler du polynôme 03B1 + bx-1 + cy + (a + bx + cy)z en termes
de dilogarithmes et trilogarithmes.

ABSTRACT. An explicit formula for the Mahler measure of the
3-variable Laurent polynomial a + bx-1 + cy + (a + bx + cy)z is
given, in terms of dilogarithms and trilogarithms.

1. Introduction

Over recent years there has been some interest in calculating explicit
formulae for the Mahler measure of polynomials. By an explicit formula I
mean, roughly, one not involving integrals or infinite sums, but involving
only standard functions (possibly defined by integrals! ) . For a polynomial
R(~ 1, ... , its (logarithmic) Mahler measure, a kind of height function,
is defined as

For a 1-variable polynomial = aj ) , Jensen’s Theorem

shows that m (R) = log |a| + Here = max(0, log x).
For 2-variable polynomials the situation is much more interesting, with
many examples of explicit formulae for their measures having been given
in terms of L-functions of quadratic characters - see Boyd [Bl], [B2], [B4],
Ray [R], Smyth [Sm]. Such formulae can readily be re-cast in terms of
dilogarithms evaluated at associated roots of unity. Also, Boyd [B2], [B4],
Rodriguez Villegas [RV] have produced many formulae (many proved, but
some still conjectural) for 2-variable Mahler measures which are rational
multiples of the derivative of the L-function of the associated elliptic curve

Manuscrit reeu le 24 avril 2001.
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evaluated at 0. Further, Boyd and Rodriguez Villegas [BRV] have obtained
explicit formulae for 2-variable Mahler measures of polynomials of the form

q(x), where p and q are cyclotomic polynomials; their formulae
involve the Bloch-Wigner dilogarithm evaluated at certain algebraic points.

For polynomials in four or more variables, no non-trivial explicit formulae
are known. For 3-variable polynomials, up till now there has been only one
non-trivial example m ( 1 + x + y + x) of an explicit formula-see Corollary
2 below.

In this paper the Mahler measure of the Laurent polynomial

is evaluated explicitly, for a, b and c any real numbers. To give the
formulae for this measure, we need some definitions. We take Lin(x) to
be the classical nth polylogarithm function (see also Lemma 1 below) and,
following Zagier [Z] put

a modified nth polylogarithm function which for n ~ 2 is real for all real x
(Lemma 4). In particular

where Log denotes the principal value of the complex logarithm, having
imaginary part in ( -~, ~r~ .

Next, for x, y i= 0 put

and for i = 2 and 3

We can now state our main result, giving m(Po,,,,) and from
which the formulae for general m(Pa,b,c) follow as an immediate corollary.

Theorem. (i) Let 0 ~ c  1. Then
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rn(P) (see (3.13)) we obtain the following.

Corollary 1. (i) For b and c real, not both 0, with lbl ~ lei

(ii) For a, b, c real and all non-zero

The case b or c = 0 of (ii) is trivial: the 2-variable polynomials Pa,o,c and
P.,c,o both have measure m(a + cy) = 
Boyd [Bl] has conjectured that the set of all m(R), for R a Laurent

polynomial in any number of variables and having integer coefficient, is
a closed subset of R Our theorem gives explicit formulae for two three-
variable Mahler measures in this set.

Corollary 2. We have

and

where is the Riemann zeta function.

The first of these results is not new - see [Bl], Appendix 1. Two more
examples (specialisations of the Theorem) are given at the end of the paper.
The results of the Theorem are proved using two main auxiliary results.

The first (Proposition 1) enables us to replace certain integrals over a whole
torus by the same integral over part of the torus. The resulting integrals
can then be calculated with the aid of certain identities (Proposition 2).
These identities were derived by simplifying the results of computing the
indefinite integrals f f log(x + and j j log( I + x + y) ff using
Mathematica. In particular, the Mathematica result of the second integral
needed a great deal of simplification, Mathematica originally producing
screenfuls of output! The proofs of these identities are now independent
of Mathematica, though I would not have found them without its help.

For the proof we will also need some results about Ln(x) and also about
(defined by (3.6) below), which is an analytic version of Ln, and

related to Kummer’s nth polylogarithm [K]. (The function Ln(x) of the
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complex variable x is only real analytic in the two variables 
[Z].)

In Section 2 we state and prove Proposition 1. In Section 3 we give some
results concerning Liri, Ln and a related function An and the connections
between them. In Section 4 we state and prove Propositions 2 and 3, and
then prove the Theorem in Section 5. In Section 6 we prove Corollary 2.
Section 7 contains two further examples.

2. Restricting the integral to part of the torus

Suppose that we have a polynomial H of the special form

a polynomial in n + r + 1 variables. Here P and Q are polynomials with
real coefficients. Then m(H) can be expressed in the following form.

Proposition 1. We have

where the integral is taken over the region where lxl = jyj = 1 
0, ~Q(y) ~ 0.

Here for instance lxl = 1 denotes the torus [x1 = -" = lxnl = 1.

Proof. Applying Jensen’s Theorem to the z-variable we have

where
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Hence, defining R+-, R-+ similarly,

Finally, as we have the result.

In this section we discuss Li, An and L, and the relations between them.
Not all of these results are needed for the proof of the Theorem. Many
are well-known, or minor variants of well-known results. We seem to need
these three varieties of polylogarithm. We have already used Lin and Ln to
state the main theorem. Also, the function An, defined below, is analytic in
the cut plane and is therefore particularly convenient to work
with. Furthermore, its values can be given in terms of the Lr (Lemma 5).
We first recall that for n &#x3E; 1

that the principal value of is

and that for n &#x3E; 2

leading to the expression of Lin as an n-fold integral. It is useful here to
note that Lin can also be written as a single integral, as follows.

Lemma 1. The principal value of is given for n &#x3E; 1 and all x E (C
by

where the integral is say taken al ong a ra y from 0 to x, unless x is real and
greater than 1, in which case the path 0 - x should pass just below the pole
att=1.
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The function Liri is analytic in (C~~1, 00), and for x on the cut (1, 00),
the discontinuity lim Lin(z + 16) - is equal to 2,7ri logn-1 (x) -Fn-- 1T!

Proof. We have Lil(x) _ - Log(1- x) and it is easily verified that (3.1)
holds for n = 2, 3, .... This integral form of Lin (x) shows that it is analytic
in (C~~1, oo). To evaluate the discontinuity at x &#x3E; 1, one can, as noted in
[Z], use (3.1) and induction. One can also obtain it directly from (3.2) by
observing that, by Cauchy’s residue theorem,

which gives the result on letting ð B 0.

We next state some very simple facts that we need. Firstly, for the
principal value Log of log,

when -x  arg x + 7r. From this we have that

when -~  arg(x~y) + 7r.

Secondly, we need the following identity coming from the binomial the-
orem :

where b is an integrable function of t, and a and b may also be functions of
x.

Now define An for all x E C by

which is a slight variant of Kummer’s nth polylogarithm (See [L], p178,
and [K]). Then = Li1(x), analytic in (C~~1, oo), while for n &#x3E; 2, An is
analytic in the same region that Log is, namely in CB ( -00, OJ, the integrand
of (3.6) then having no pole at t =1.
The next result relates Lin and A.

Lemma 2. For n &#x3E; 1 we have
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and

Proof. From Lemma 1 and (3.4),

using (3.5) with a = log x, b = - Log t. The second formula also follows
from (3.5), using (3.6) and (3.4) to write An(x) as

and then using (3.2).
We also need some properties of An.

Lemma 3. Let n ) 2. Then
(a) For all x E CB( -00,0] zue have the functional equation

Further, is imaginary (x  0).
Clearly = 27ri for x on the cut (1, oo) of A 1 - It amusing to note

that for n = 1 (a) becomes

where the + sign is taken if sx  0 or x &#x3E; 1, and the - sign otherwise.

Proof. (a) Now one readily checks that

Then the result follows on integration, evaluating the constant by putting
x = 1.
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(b) Take x  0, and put u = - Log t. Then from the definition of An, 0n
is given by

using (3.5) with a = 2i7r, b = - Log t. Also, as ü = u + 2i1r for t  0, we see
that for x  0

is imaginary. In particular

and

since A3 has zero real part.
We now express Ln as an integral.

Lemma 4. We have for n &#x3E; 2 and all x

This is real for all real x.

Proof. Using Lemma 1 and the definition of Ln we have

using (3.5). Then, as x/t is real and positive when we integrate along the
ray from 0 to x, (3.4) gives the result. For n &#x3E; 2 the integral has no pole
at t = 1, so the integral is then real for all x.

We can now compare An and Ln . Clearly = for x real and

positive.
Lemma 5. For 0 = arg x E (-~, ~rJ we have
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using (3.6). Similarly, for

giving the second result.

In particular, for x  0 we have

and

Remark. One can readily write down the generating function Li(x, T) :=
for the Lin, with similar generating functions L(x, T) and

A(x, T) for the Ln and the An, respectively. Then, using the integral rep-
resentations (3.2), (3.6) and Lemma 4 for these functions we easily obtain

By expanding these identities one gets alternative proofs of Lemmas 2 and
5, with Lemma 3(b) following similarly.

We next need the following identity for special values of L3 .
Lemma 6. We have 2 L3(3) - L3(-3) = s ~(3).
Proof. For this somewhat ad hoc proof we use the following sequence of
results from Lewin [L], with his equation numbers and values of his variables
given:

For Li2 :
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from which

For Lia : .
From its definition we know that

’ 

and also

which from ( 1.3~ also give Further

where

Using (1.3) again, and (3.11), (3.12)

as claimed.

Lemma 7. (Schinzel [Sc, Cor. 8, p. 226-7]) For an n-variable polynomial
P(x), and a x n integer matrix Y, we have

Here as usual xv denotes I
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Then the map 0 e w from to itself is a idet VI-fold linear covering
of On the other hand this map has Jacobian det so that

In particular, the lemma immediately gives

4. Two partial derivative identities

We now study functions §3 and Î, which are bi-analytic versions of the
functions g3 and f (defined in (5.6) below). The hat denotes ’lambdafica-
tion’.

Proposition 2. (a) The functions

are both analytic for x and y in the upper half-plane 1/,.
Furthernaore we have the following identities.

(b) For x, y E 1/,

(c) For x, y E 1£ with Ixl  jyj we have

Proof. (a) First note that if itz &#x3E; 0, Eliy &#x3E; 0 then none of

can be real and negative.

On the other hand arg (1 + ~) and
cannot be real and positive,

and hence ~is not 1 + A. This shows that the image of 1-£ x li under each of
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the maps (x, y) H 1+~, (x, y) ~ 1+-~, and (x, y) H lies in the

cut plane CB(2013oo,0] where A2, A3 and Log are all analytic. Hence 93 and
I are both bi-analytic in 1l x 1-£.

(b) We now assume for the moment that x and y are both near enough
to the positive imaginary axis so that E (0, ~r), arg x, arg y E
( § - 6, § + 6) say, and so

and arg Then, writing i = Log(1 + x + y) and

using (3.4) we have

Using these identities we readily calculate, using (3.3), that

Swapping x and y in the second identity and then adding all three identities,
we see that (b) is valid for x and y both near the positive imaginary axis,
as assumed above. In fact, as arg(1 + x + y) E (0,7r] for x, y E 1-£ we see
that, by continuity, that (b) actually holds for all such x and y.

(c) Here, direct calculation using Ln(x) = gives

and arg( (

giving the result.
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Next, we need to for x, y in the upper half plane, as they
each tend to points on the real axis. To do this, we need to define y)

and y real by

Proposition 3.

Proof. We separate the proof into three cases corresponding to the cases in
the definition of r above.
We first consider the case xo  0, yo &#x3E; 0, 1-~- xo + yo &#x3E; 0, and note that

Then, as xo and -(1+yo) are both negative,
lower half plane. Hence

from the

This proves the first case of the Proposition.
The second case comes from interchanging x and y. For the third case,

first note that since by Lemma 3 the jump A3 for A3 having argument on
the negative real axis is imaginary,

Also, as Log y - i1r is real for y  0, and by Lemma 3 the jump A2 for A2
on the negative real axis is also imaginary, we have

when yo  0 or &#x3E; 0. A similar result holds for
0. This proves the third case of the Proposition.



696

5. Proof of the Theorem

We can now evaluate the Mahler measures of the Theorem and Corol-

lary 1. First of all, by Proposition 1 we have

where the integrals are taken on the semicircles x = ceze (0  B  x) and

as is real. Here cx has been replaced by x in the integrand.x y
We now apply Proposition 2 (ii) for c  1, which gives

Since the Mahler measure of a polynomial is a continuous function of its
coefficients [B3], this formula is also valid for c = 1. Then we get the same
formula for as = from (5.1).

We now evaluate From Proposition 1 we obtain the formula

in a similar manner to (5.2). Here we have replaced bx and cy by x and
y respectively, so that the integrals are taken over the semicircles x =

~r), y = 8 ~ 7r). Since the right-hand side of (5.4)
is symmetrical in x and y, we can assume that b &#x3E; c &#x3E; 0. Then from

Propositions 2(ii) and 3 we have that

Next, define for real x and y

Our aim is to derive a more computable form of (5.6), namely (5.11),
which is (5.6) with r replaced by f . To do this, we next compute the four



697

terms r(fb, ±c) of (5.5) in terms of f. Firstly, using (3.7) and (3.8)

Next, for r ( b, - c) , we have so that,

using (3.8) again, and the definitions of f and r,

Now as Log(-c) - i7r = log c is real, (3.7) gives

we distinguish two cases
. - I L. - - 

.

, so that similarly

so that

which again gives (5.9) on simplification.
For r(-b, -c) we distinguish two cases
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giving (5.10) again in this case.
Using (5.5), (5.7), (5.8), (5.9) and (5.10) we now get

which, from (5.6) gives the formula stated in the Theorem.

6. Proof of Corollary 2

Now by Lemma 7 with V : we have

using the Theorem for Po,i,i , and (a),(b) from the proof of Lemma 6.
For the second result

using Lemma 6.
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7. Further examples

We have from the Theorem that

This can be re-written using polylogarithms with argument - 2 only by

which can, again using standard formulae, be shown to be given in terms
of classical di- and trilogarithms by

Acknowledgement. I am grateful to Harry Braden and John Byatt-
Smith for stimulating discussions on the integrals of this paper. Also, I
thank David Boyd for the reference for Lemma 7.
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