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Galois theory and torsion points
on curves

par MATTHEW H. BAKER et KENNETH A. RIBET

RÉSUMÉ. Dans cet article, nous exposons diverses techniques de
théorie de Galois qui s’appliquent à l’étude des points de torsion
des courbes. En particulier, nous donnons de nouvelles démonstra-
tions de résultats de A. Tamagawa et des auteurs concernant les
points de torsion des courbes à "bonne" ou "semi-stable" réduction
"ordinaire" en un nombre premier donné. Nous donnons égale-
ment de nouvelles démonstrations de : (1) la conjecture de Manin-
Mumford : il n’y a qu’un nombre fini de points de torsion sur
une courbe de genre au moins 2 plongée dans sa jacobienne par
l’application d’Albanese ; et (2) : la conjecture de Coleman-
Kaskel-Ribet : pour un nombre premier p ~ 23, les seuls points
de torsion appartenant à la courbe X0(p) plongée dans sa jaco-
bienne par un plongement cuspidal sont les pointes (et les points
de branchement hyperelliptique lorsque X0(p) est hyperelliptique
et p ~ 37). Afin de rendre l’exposition aussi utile que possible,
nous donnons des références pour tous les résultats sur les courbes
modulaires qui interviennent dans notre discussion.

ABSTRACT. In this paper, we survey some Galois-theoretic tech-

niques for studying torsion points on curves. In particular, we give
new proofs of some results of A. Tamagawa and the present au-
thors for studying torsion points on curves with "ordinary good"
or "ordinary semistable" reduction at a given prime. We also

give new proofs of: (1) The Manin-Mumford conjecture: There
are only finitely many torsion points lying on a curve of genus at
least 2 embedded in its Jacobian by an Albanese map; and (2) The
Coleman-Kaskel-Ribet conjecture: If p is a prime number which is
at least 23, then the only torsion points lying on the curve X0(p),
embedded in its Jacobian by a cuspidal embedding, are the cusps
(together with the hyperelliptic branch points when X0(p) is hy-
perelliptic and p is not 37). In an effort to make the exposition as
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useful as possible, we provide references for all of the facts about
modular curves which are needed for our discussion.

1. Introduction

This paper surveys Galois-theoretic techniques for studying torsion
points on curves that have been developed in recent years by A. Tama-
gawa and the present authors.

We begin with a brief history of the problem of determining the set of
points of a curve that map to torsion points of the Jacobian of the curve.

Let K be a number field, and suppose that X/K is an algebraic curvel
of genus g &#x3E; 2. Assume, furthermore, that X is embedded in its Jacobian
variety J via a K-rational Albanese map i; thus there is a K-rational divisor
D of degree one on X such that defined on K-valued

points by the rule i (P) = ~(P) - DJ, where [ . ] denotes the linear equivalence
class of a divisor on X. When D is a K-rational point Po, we often refer
to Po as the base point of the embedding ipo.

Let T := J(K)tors denote the torsion subgroup of J(K).
Theorem 1.1. The set X(K) rl T is finite.

Theorem 1.1 was stated as the Manin-Mumford conjecture by S. Lang
in 1965. In his article ~14~, Lang reduced this conjecture to a second con-
jectural statement, which concerns the action of Galois groups on tor-
sion points of abelian varieties over finitely generated fields. This latter
statement is still unproven, despite recent partial progress by Serre, Win-
tenberger (see [30]) and other authors. The first proof of the Manin-
Mumford conjecture was provided by M. Raynaud [23], who combined
Galois-theoretic results on torsion points of J with a subtle analysis of
the reductions mod p 2of X and J for a suitable prime p. A second proof
was given by R. Coleman 2in [6] using p-adic integration to analyze the set
of primes that may ramify in the field generated by a torsion point on X.

Raynaud also proved the following generalized version of the Manin-
Mumford conjecture (see [24]):
Theorem 1.2. Let K be a field of characteristic zero, and let A/K be an
abelian variety. Let V be a subvariety of A which is not the translate by
a torsion point of a positive-dimensional abelian subvariety B of A. Let

T := Then the set T n V is not Zariski-dense in V.

1 By an algebraic curve, we mean a complete, nonsingular, and absolutely irreducible variety
of dimension one over a field.

2 The results of Tamagawa that we present in section 4 of this paper are closely related to
Coleman’s work in (6~, although the methods are different.
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One can use Theorem 1.2 to establish uniform bounds for the cardinality
of X(K) n T as one varies the Albanese embedding; see [3] for details.

It is also possible to generalize Theorem 1.2 in several different directions,
replacing T by the division group of any finitely generated subgroup of
A(K), or by any sequence of points in A(K) whose canonical height tends
to zero. See [21] for precise statements and further results.

In this paper, however, we focus on the original problem: What can we
say about the intersection when X is a curve? We are particularly
interested in explicit determination of this intersection for particular classes
of curves. We mention the following three results:

1. ( Curves of genus 2) B. Poonen’s paper [22] gives an algorithm (which
has been implemented on a computer) for determining the intersection
X Q) n T when X/Q is a genus 2 curve embedded in its Jacobian using a
Weierstrass point. Poonen’s method relies crucially on ideas of Buium [4]
and Coleman [6].

2. (Fermat curves) Suppose X is the plane curve given by the equation
xm + ym = z’ for m &#x3E; 4. The cusps of X are the points (x, y, z) E X(Q)
such that xyz = 0. Rohrlich [27] proved that the difference of two cusps is
always torsion as an element of J. Fix a cusp c and embed X in J using c
as a base point. Coleman, Tamagawa, and Tzermias [8] prove:
Theorem 1.3. The torsion points on X in the embeddings ic : X -4 J are
precisely the cusps.

The proof of this theorem involves, among other things, Coleman’s p-
adic integration methods, complex multiplication theory, and results on
class numbers of cyclotomic fields.

3. (Modular curves) In [2] and [29], the authors independently prove a
conjecture of Coleman, Kaskel, and Ribet [7] concerning torsion points on
the modular curve Xo (p) in the cuspidal embedding.

Recall that a curve X/K of genus g &#x3E; 2 over a field K is hyperelliptic
if there exists a degree 2 map f : X - Pl defined over K. Such a map,
if it exists, is necessarily unique (up to an automorphism of Pl), and the
ramification points of f are called the hyperelliptic branch points.
The Coleman-Kaskel-Ribet conjecture is the following statement.

Theorem 1.4. Let p &#x3E; 23 be a prime number, and let X be the modular
curve Xo(P). Let H be the set of hyperelliptic branch points on X when
X is hyperelliptic and p ~ 37, and otherwise let H = 0. Then the set of
torsion points on X in the embeddings X - J is precisely f 0, oo} U H.

Note that the condition p &#x3E; 23 in Theorem 1.4 is equivalent to the genus
of Xo (p) being at least 2.
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We do not discuss results (1) or (2) further in this paper, but we will say
much more about the modular curves and we give a complete proof
of Theorem 1.4 in section 5.

Remark 1.5. It is easy to obtain results similar to Theorem 1.4 for 
or X 1 (mp) with p &#x3E; 23 prime and m arbitrary by utilizing the natural map

See [2, Proposition 4.1] for details.

Remark 1.6. Though the proof of Theorem 1.4 we give in this paper is
simpler than the previously published ones, it still relies upon a number
of deep results, e.g. Grothendieck’s semistable reduction theorem, Mazur’s
detailed study of the arithmetic of Xo {p) and Jo (p), and the second author’s
level-lowering theorem.

Here is a brief outline of the contents of this paper. In section 2 we
discuss what it means for an element of a module to be "almost fixed" by a
group action, and we prove some elementary lemmas about such elements.
We then show how these ideas can be combined with a result of Serre to give
a simple proof of the Manin-Mumford conjecture. In section 3, we study
torsion points on Abelian varieties which are almost fixed by the action of
an inertia group. This is done, following Tamagawa, in the abstract setting
of "ordinary semistable" and "ordinary good" modules. In section 4, the
abstract algebraic manipulations of section 3 are placed in a geometric
context, with Theorems 4.1 and 4.3 as the reward. In section 5, we discuss
the proof of Theorem 1.4. We attempt to give references for all of the facts
we use about modular curves and their Jacobians. The material in section
5 relies on section 2 up through and including Lemma 2.7, and on section
3 up through Theorem 3.6, so the reader who is only interested in reading
the proof of Theorem 1.4 can skip section 4 and the other parts of sections
2 and 3. In order to preserve the flow of the paper, a few results quoted in
the body of the paper are relegated to appendices.

Acknowledgements. We include fairly detailed proofs of all results pre-
sented in this paper in order to keep the exposition reasonably self-contai-
ned. However, a number of the proofs in this paper can also be found in
[2], [29], and [13]. All results in sections 3 and 4, except for Proposition
3.7, are due to Tamagawa, and appear in his paper [29]. However, most of
the proofs in section 3 are new. The proof of Theorem 5.1 which we give
combines elements from both [2] and [29].

2. Almost Rational Points and the lVtanin-Mumford Conjecture
In this section ~ is a field and X / K is an algebraic curve of genus at

least 2.
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The results of this section and the next are motivated by the following
simple observation, which plays a key role in the proof of the Coleman-
Kaskel-Ribet conjecture.

Lemma 2.1. Suppose X is embedded in its Jacobian J via a K-rational
Albanese map iD. Let P E X(K); if X is hyperelliptic, assume that P is
not a hyperelliptic branch point. Suppose that there exist g, h E Gal(KIK)
such that gP + hP = 2P in J. Then gP = hP = P.

Proof. To be pedantic, we write Q = iD (P), so that P is a point on X and
Q = [(P) (D)] is its image in the Jacobian of X . We are given that gQ +
hQ = 2Q in J, so that the degree-zero divisors (gP) - (gD) + (hP) - (hD)
and 2(P) - 2(D) are linearly equivalent. Since D is K-rational, it follows
that the divisors (gP) + (hP) and 2(P) on X are linearly equivalent, so that
there exists a rational function f on X whose divisor is (gP) -f- (hP) - 2(P).
Since P is not a hyperelliptic branch point, f must be constant, so that
gP = hP = P, as desired.3 D

Lemma 2.1 suggests the following definition.

Definztion 1. Let G be a group, and let M be a Z[G]-module. An element
P of M is almost fixed (by G) if (g + h - 2)P = 0 with g, h E G implies
that (g-1)P=(h-1)P=0.
The module M is almost fixed if (g + h - 2) M = 0 with g, h E G implies

that (g-1)M=(h-1)M=0.
Remark 2.2. If G = GK is the absolute Galois group of a field K, we will
often use the term almost rational instead of almost fixed.

We will be particularly interested in the set of almost rational torsion
points of M.

Example 2.3. The set of almost rational torsion points of is A6,
the group of sixth roots of unity.

The proof is left as an exercise for the reader (or see [2, Lemma 3.14)).
We now prove some elementary lemmas concerning almost fixed elements

and almost fixed modules.

Lemma 2.4. Let P be an almost fixed element of the Z[G]-module M.
1. If a E G, then aP is almost fixed.
2. If g E G and (g - 1)2P = 0, then (g - 1)P = 0.

3Notice how we are using that J is both the Albanese and Picard variety for X. The interplay
between the two properties of J lies behind many of the geometric results discussed in this paper.
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Proof. For the first part, notice that if (g -I-1~ - = 0, then

which implies that 1 ) P = 1 ) P = 0. Therefore both g
and h fix aP, as desired.

For the second statement, we are given that (g~ - 2g + 1)P = 0. Multi-
plying on the left by g-1, we find that (g + g-1 - 2).P = 0, and therefore
(g - 1 ) P = 0 by the definition of "almost fixed." 0

Lemma 2.5. Let M be a Z[G]-module. If M is generated b y almost fixed
elements, then M is almost ,fixed.

Proof. Let Pi, ... , Pk be almost fixed elements that generate M as a Z[G]-
module, and let g, h be elements of G such that (g -f- h - 2) M = 0. Then
(g -~- h - 2) {dPi ) - 0 for all E G and all i = 1, ... k. By Lemma 2.4,
each O’Pi is almost fixed, and therefore both g and h fix all of the As
the aPi generate M as a Z-module, it follows that both g and h fix every
element of M. Therefore M is almost fixed. 0

Remark 2.6. It is not true that if M is almost fixed then every element of
M is almost fixed. For example, let M be the 2-dimensional (Z/5Z)-vector
space (Z/5Z)2, and let G = (Z/4Z) act on M by sending a generator to
A := ( 0 1 1 A short computation shows that M is almost fixed, but( - 0 ) p ’

the vector = 2 ] is not, since Av + = 2v but Av v.I 1 ) ’

Let us return to the geometric situation of Lemma 2.1, so that K is a
field, Gx = is the absolute Galois group of .K, and is a

curve of genus g &#x3E; 2, embedded in its Jacobian J via a K-rational Albanese
map.

If P E X (~), then following A. Tamagawa, we say that the pair (X, P)
is exceptional if X is hyperelliptic and P is a hyperelliptic branch point on
X.

The following is a reformulation of Lemma 2.1 using our new terminology.
Lemma 2.7. Let P be a K-valued point of X . Then ezther (X, P) is ex-
ceptional, or P is almost rational. 

We illustrate the usefulness of the notion of almost rationality by pre-
senting a short proof of the Manin-Mumford conjecture.

The proof exploits the following deep resUlt4 due to Serre.

4This result was presented in Serre’s College de France lectures (1985-1986), but the proof
has not yet been published. The main theorems of [12] and [19] both depend on this result.
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Theorem 2.8. Let K be a finztely generated field of characteristic zero.
Let A/.K be an abelian variety of dimension g, and let p : GK ~ 
d enote the Galois representation arising from the ad elic Tate modul e of A.
Let Z* C GL2g(2) denote the subgroup of homotheties. Then the group

Z*/ p(GK) f1 Z* has finite exponent.
We will also need the following lemma (compare with Example 2.3):

Lemma 2.9. Let e be a positive integer. Then there is a positive constant
C(e) such that for all integers m &#x3E; C(e), there exist x, y E (Z/mZ)* such
that 1 b2at xe = 2.

Proof. By the Chinese remainder theorem, it suffices to consider the case
where m = pk is a prime power.

If l~ = 1, we want to look at Fp-rational points on the projective curve
C defined by xe + ye = 2. By the Weil bounds, #C(Fp) = p + 1 + 
Since the number of points (x, y) E C(Fp) with one of xe, ye being 0 or 1
is at most (e + 1)2, the result follows in this case.

Finally, suppose k &#x3E; 2. If p &#x3E; e, Hensel’s lemma guarantees the existence
of x, y E Z /p*’Z such that xe = 1 = 1 - pk-l. Since = 1,
we have (Z/mZ)*. 0

We can now prove the following finiteness result:

Theorem 2.10. Let K be a finitely generated field of characteristic zero,
and let A/ K be an abelian variety. Then the set of almost rational torsion
points on A is finite 5

Proof. By Theorem 2.8, there exists a positive integer e such that the group
Z*/ n Z* has exponent e. Let P be a torsion point on A of order
m &#x3E; C(e). By Lemma 2.9, there exist x, y E (Z/mZ)* such that xe, ye =1= 1
but = 2. Since (Z*)e 9 p(GK) n Z*, we can choose g, h E Gal(Q/Q)
such that g, h act on A [m] as xe and y’, respectively. Then (g + h - 2) P = 0
but neither g nor h fixes P, so P is not almost rational. It follows that the
set of almost rational torsion points on A is finite. D

The Manin-Mumford conjecture follows easily from 2.10:

Corollary ~.11. Let K be as above, and let X be a curve of genus at
least 2, embedded in its Jacobian J by an Albanese map. Then the set of
torsion points on X is finite.

5 See also [5], in which the author classifies almost rational torsion points on semistable elliptic
curves over Q.
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Proof. The set of hyperelliptic branch points on X is finite, as is the set
of almost rational torsion points on J. The result therefore follows from
Lemma 2.7. 0

3. Ordinary semistable and almost unramified modules

In this section, R will denote the ring of integers in a finite unramified
extension K of Qp, where p is an odd prime.s
We will denote by I the inertia subgroup of G := Gal(K/K), and by

¡tame the inertia subgroup of where Ktame is the max-
imal tamely ramified extension of 1~. Recall that the group IWlld :=

is a pro-p group, and that is canonically isomorphic
to the group where the transition maps are given by taking norms.

For each n &#x3E; 1, we denote by I (n) the (normal) subgroup of .I fixing
all of the pnth roots of unity in .~, and we let 1(00) be the intersection of
I (n) for all natural numbers n, so that is the subgroup of I fixing all
p-power roots of unity.

The motivation for the results in this section comes from the following
observation:

Lemma 3.1. Let be a curve of genus at least 2, embedded in its
Jacobian J via a .K-rational Albanese map. Suppose that J is semistable,
that P E X(K) is a torsion point of order prime to p, and that (X, P) is
not exceptzonal. Then I fixes P, z. e., P is unramified.

Proof. Grothendieck showed in [11, Proposition 3.5] that if A/K is a
semistable abelian variety and P E A(K) has order prime to p, then
(~ - = 0 for all o- E I. Therefore in our situation we have

for all o- E I. The result now follows from Lemma 2.7. D

We now make some definitions.

Definition 2. Let M be a Z[I]-module. An element P E M (resp. M itself)
is almost unramified if P (resp. is almost fixed with respect to the action
of I.

In other words, M is almost unramified if and only if whenever (9 -f- h -
2)M = 0 with g,h ~ 1, we have = (/t - l)Af = 0.

6For the case p = 2, see Tamagawa’s paper [29].
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Definition 3. A finite Z[I]-module M is ordinary semistable if there exists
an exact sequence of Z [I]-modules

such that:

(i) I acts on M’ via7 the cyclotomic character X
(ii) I acts trivially on M".

For each finite Z[7]-module M, there is a unique decomposition M =
Mp 0 Mnon-p, where Mp has p-power order and Mnon-p has order prime to
p. Using this notation, we have the following definition.

Definition 4. A finite Z[I]-module M is ordinary good if it is ordinary semi-
stable and, in addition, I acts trivially on Mnon-p-
The definitions of ordinary good and ordinary semistable modules are

motivated by the following:

Definition 5. An abelian variety A/K has ordinary semzstable reduction if
the connected component of the closed fiber of the N6ron model of A over
.R is an extension of an ordinary abelian variety by a torus.

Theorem 3.2. Let A be an abelian variety over K and let n be a positive
integer.
1. If A has good ordinary reduction over R, then A[n] is an ordinary good

Z[I]-module.
2. If A has ordinary semistable reduction over R, then A[n] is an ordinary

semistable Z[I]-module.

Proof. This is a consequence of Grothendieck’s study in SGA7 of Galois
actions on torsion points of semistable abelian varieties. See [29] for details
and precise references. 0

As a prototype of results to come, we have the following lemma (compare
with Lemma 3.1):
Lemma 3.3. Suppose M is an ordinary semistable and almost unramified,
Z[I]-module of order prime to p. Then I acts trivially on M.

Proof. Let M’ and M" be as in the definition of "ordinary semistable".
Since the order of M’ is prime to p and M’ is cyclotomic, I acts trivially
on M’ . Since I acts trivially on M" as well, it follows that (g - 1 ) 2 M = 0

7If N is a torsion abelian group, then N is naturally a Z-module. Also, the inertia group I
comes equipped with a cyclotomic character X : I - Z* . It therefore makes sense to say that a
torsion I-module N is cyclotomic: this means that an = for all u E I and n E N. Note
that if N is cyclotomic and has order prime to p, then I acts trivially on N, and that in general
if N is cyclotomic, then I will act on N through its abelian quotient I/I(oo).
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for all g E I. But since M is also almost unramified, Lemma 2.4 tells us
that (g - I)M = 0, so that I acts trivially on M, as desired. 0

With an eye toward applying the results of this section to the study
of ramified torsion points on curves, we now undertake an investigation of
modules that are both almost unramified and ordinary semistable. All ZI-
modules which appear are assumed to be finite unless otherwise specified.

Lemma 3.4. If M is an ordinary serraistable and almost unramified Z[Il-
module, then 1(00) acts trivially on M. Therefore, the action of I on M
factors through its abelian. quotient Z*
Proof. Since I(oo) acts trivially on both M’ and M" in the filtration (1)
coming from the definition of "ordinary semistable," it follows that (g -
1)2M = 0 for all g E I(oo). That M is almost unramified then implies, by
Lemma 2.4, that I(oo) acts trivially on M. 0

Proposition 3.5. Let M be an ordinary semistable and almost unramified
Z[I]-module. Let p~"~ be the order of Mp, and let g, h be elements of I such
that X(g) + x(h) = 2 mod p’"’~. Then (g + h - 2)MP = 0.

Proof. Let 0 - M’ - M --7 M~~ ~ 0 be the filtration of M given by (1),
let MP = M’ fl Mp, and let Mp be the image of MP in M" under the given
surjection.
Then we have an exact sequence

of modules of p-power order which again satisfies properties (i) and (ii) in
the definition of "ordinary semistable."

Since I acts on Mp via the cyclotomic character, and since we are as-
suming that p &#x3E; 2, the subgroup (Mp)I of inertia invariants in M’ must be
zero.

The = 2 mod p"z implies that a := g+h-2 kills both

Afp and Therefore a acts on Mp via a homomorphism 0 : M~ -~ M~.
Since the action of I on M is abelian by Lemma 3.~, ~ is a homomorphism
of I-modules, and therefore (since .~ acts trivially on M") the image of 0 is
contained in ( Mp ) I = 0. It follows that a kills Mp, as desired. D

Theorem 3.6. Let M be an ordinary semistable and almost unramified
Z[I]-module.

1. The group 7(1) acts triviall y on M.
2. I, f p &#x3E; 5 and M is ordinary good, then I acts trivially on M.
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Proof. Let g E I(1). Since X(g) is 1 mod p and X : I --~ ZP is surjective,
we can find h in I(l) such that x(g) + X(h) = 2 in Zp. By Proposition
3.5, (g + h - 2)Mp = 0, where Mp again denotes the p-primary part of M.
Also, by Lemma 3.4 we know that 1(00) acts trivially on M, from which
it follows by Lemma A.I and the definition of "ordinary semistable" that
the action of the pro-p group I(1)/I(oo) on Mnon-p is trivial. Therefore

(g + h - 2) M = 0. As M is almost unramified, it follows that = 0.
This proves part 1 of the theorem.

To prove part 2, assume that p &#x3E; 5 and that M is ordinary good. Then
g E I acts trivially on M whenever we can solve the equation x(g)+X(h) = 2
in i.e., whenever x(g) is not 2 mod p. Thus the set of g E I acting
trivially on M forms a subgroup of I whose image H in III(L) contains at
least p - 2 elements. Since I/I (1) has order p -1 and p &#x3E; 5, it follows that
H = I/I(1). Therefore I acts trivially on M. 0

We take a moment to remind the reader of our running assumption that
p is odd.

Proposition 3.7. Let M be an ordinary semistable and almost unramified
Z[I] -module. Then MP is killed by p and Mp = (MP)I.
Proof. By Theorem 3.6, I(1) acts trivially on M. Since I acts via the p-adic
cyclotomic character X on Mp, it follows that pMP = 0.
To prove the second statement, consider the exact sequence

given by (2). As we have already seen, (M;)I = 0. As I acts on M~, through
its abelian quotient I/I(1), we can apply Sah’s lemma (Lemma A.2) to an
element g of I such that X(g) is 2 mod p, and we see that H’ (I, Af?) = 0.
Therefore the natural map = Mp is an isomorphism, which
is equivalent to the desired statement that Mp = M; EÐ (Mp),- 0

Corollary 3.8. In addition to the hypotheses of the proposition, suppose
we are given an and an integer r E Z such that x(g) - -r
(rraod p). Then (g + r)(g + g-1 - 2)M = 0.

Proof. By Proposition 3.7, we have

and pM; = 0, so it follows from the definition of "ordinary semistable" that

Therefore
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which gives the desired result. 0

Corollary 3.9. Suppose M is an ordinary semistable and almost unrami-
fied cyclic Z[I]-module, and that P is a generator. If I acts nontrivially on
M, then the group of elements of I that fix P is precisely I(l).

Proof. We know by Theorem 3.6 that I(1) acts trivially on M. Since I acts
nontrivially on M but trivially on Mnon-p (by Lemma 3.3), p must divide
the order of M. We then see from Proposition 3.7 that p exactly divides
the order of M~, and that I acts on M~ via the mod p cyclotomic character.
In particular, we can use Proposition 3.7 to write P as x ~-- y, where x E MP
and y E MI. We must have x =F 0, or else I would fix aP for all Q E I and
therefore act trivially on M. It follows that (g - 1)P = (X(g) - 1)x =F 0 for
all g E I such that x(g) fl 1 (mod p), i.e., for all g E I - I(l). 0

4. Ramified torsion points on curves

As in the previous section, K denotes a finite unramified extension of
Qp, with p ~ 2.

Throughout this section, X will denote a curve over K, embedded in its
Jacobian J via a K-rational Albanese map.

In this section, we apply the results of section 3 to the study of torsion
points on X. The idea, due to Tamagawa, is to use elements of the inertia
group I which act nontrivially on a torsion point 1’ E X(K) to produce
rational functions on X of small degree.
We first recall some basic facts about algebraic curves which can be

found, for example, in [10, 111.5].
If P E X(K), we denote by WM(P) the Weierstrass monoid at P con-

sisting of all nonnegative integers m such that there exists a rational func-
tion on X of degree exactly m having no poles outside P. It is clear from the
definition that 0 E WM(P), and that if a, b E WM(P) then a+b E WM(P),
so that WM(P) is indeed a monoid.

Let N denote the monoid tO, 1, 2,... 1 of nonnegative integers, together
with the operation of addition. The complement of WM(P) in N, which
we denote by WG(P), is called the set of Weierstrass gaps at P. It follows
from the Riemann-Roch theorem that WG(P) has exactly g elements. A
point P on X is called a Weierstrass point if there exists m E WM(P) such
that I  m  g, or equivalently, if WG(P) ~ {l, 2, ... , gl. It is well known
that a curve of genus g &#x3E; 2 has at most g3 - g Weierstrass points.
We now investigate the implications of the results of the previous section

for ramified torsion points on curves.
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Part 2a of the following theorem was originally proved by Coleman using
p-adic integration techniques. The rest of the theorem is due to Tamagawa.

Theorem 4.1. Let X be a curves over K whose Jacobian J has ordinary
serrzistable reduction, and suppose X is embedded in J using a K-rational
point.

Let P be a torsion point on X . Then:

1. The group l(l) fixes P.
2a. If p &#x3E; 5 and J has good ordinary reduction, then P is unramified.
2b. If p = 3 and J has good ordinccry reduction, then either P is unramified

or 3 E WM(P).

Proof. When (X, P) is exceptional, the result follows from Proposition B.1.
So we may assume that (X, P) is not exceptional.

By Theorem 3.2, the Z[I]-submodule M of J generated by P is ordinary
semistable, and is ordinary good when J has good ordinary reduction. Since
(X, P) is not exceptional, it follows from Lemmas 2.7 and 2.5 that M is
almost unramified. Parts 1 and 2a therefore follow from Theorem 3.6.

For part 2b, note that if Q E I does not fix P, then QP - P has order p
in J by Proposition 3.7. Therefore the divisor P(QP) - p(P) is principal.

0

Proposition 4.2. Suppose J has ordinary semistable reduction, and let P
be a torsion point of J lying on X which is ramified at p. Assume also that
(X, P) is not exceptional. Let r be a positive integer s2cch that r ~ 0, 1, or
-1 (mod p). Then the integer 2r - 1 lies in WM(P); i.e., there exists a
rational function of degree 2r - 1 on X with no poles outside P.

Proof. Let M be the Z[I]-module generated by P. Then as in the proof
of Theorem 4.1, M is ordinary semistable and almost unramified. By hy-
pothesis, I acts nontrivially on M. Also, by Corollary 3.9, P for all
Q E I such that X(a) 0 1 (mod p). Since X is surjective, given any positive
integer r such that r 0 0 (mod p), we can find Q E I such that x(Q) - -r
(mod p). If in addition r fl 1 or -1 (mod p), then 0’2 P =I P. By Corollary
3.8, we also know that (a + Q-1 - 2)(Q + r)P = 0 in J. Multiplying this
expression out, we find that there exists a rational function f on X whose
divisor is

The proposition now follows from the fact that the degree of f is 2r - 1,
since P does not equal a-1 P, a~P, or (12 P. 0

The following is one of the main theorems of Tamagawa [29].
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Theorem 4.3. Assume that J has ordinary semistable reduction, that

(X, P) is not exceptional, and that P is a ramified torsion point on X.
Then:

Proof. Suppose, for example, that p &#x3E; 5. Taking r = 2, 3 in Proposition
4.2, we see that 3,5 E WM(P). By Lemma A.3, it follows that WG(P) C
{I, 2,4,7}, and therefore g  4. Similarly, if p 2:: 7, then taking r = 4 we
find that 7 is also in WM(P), and therefore WG(P) C {1, 2, 4}, so that
g  3. Finally, suppose p &#x3E; 29 and g = 3. We know from Corollary 3.9
that the stabilizer of P in I is precisely I(1). Therefore the set loP or E 1}
has p -1 &#x3E; 28 elements. Since 3 E WG(P), P must be a Weierstrass point,
and therefore all of the points QP with a E I must be Weierstrass points.
Since there are at most g3 - g = 24 Weierstrass points on X, this is a
contradiction. 0

We conclude this section with an intriguing open problem. The following
conjecture was made by R. Coleman [6]:

Conjecture 4.4. Let p &#x3E; 5 be a prime number, and suppose that K/Qp is
an unramified finite extension. Let X/K be a curve of genus g &#x3E; 2, embed-
ded in its Jacobian via a K-rational Albanese map. Suppose furthermore
that X has good reduction over K. Then every torsion point P E X(K) is
unramified.

In [6], Coleman proved this conjecture in the following cases:
(i) X has ordinary reduction
(ii) X has superspecial reduction
(iii) p &#x3E; 2g.

The hypotheses of the conjecture are necessary-see [1, Appendix] for
an example.
On the other hand, Theorem 4.3 shows that with a few more restrictions

on the prime p, the conclusion of the conjecture remains true if X merely
has ordinary semistable reduction over K. It would be interesting to try to
use the Galois-theoretic methods surveyed in this paper to prove additional
cases of Coleman’s conjecture.

5. Torsion points on modular curves

In this section, we use the results of section 3 to give a short proof of the
Coleman-Kaskel-Ribet conjecture.
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We first recall some facts about the modular curves Xo(P), for which a
basic reference is Mazur [16].

Fix a prime number p &#x3E; 5. The modular curve Xo (p) is a compactified
coarse moduli space for degree-p isogenies between elliptic curves.

As a Riemann surface, can be thought of as the quotient of the
complex upper half plane 1-£ by the action of the group ro(p), suitably
compactified by adding the two cusps 0 and oo. As an algebraic curve,
Xo(p) is defined over Q and the cusps 0 and oo are Q-rational points.
From now on we assume that p &#x3E; 23, which is equivalent to assuming

that the genus g of Xo (p) is at least 2.
To simplify notation, we let X := Xo(P) and J := Jo(p).
There is an involution wp of X , called the Atkin-Lehner involution, which

interchanges 0 and oo. We note that wp always has fixed points ([20, §2]).
The quotient of X by wp will be denoted by Xo (p), or simply X+. Its

genus will be denoted by g+.
For p &#x3E; 23, we have g+ = 0 if and only if p E {23, 29, 31, 41, 47, 53, 71}.
It is known (see [20]) that X is hyperelliptic if and only if either g+ = 0

or p = 37.

For each Q E X(Q), we can define an embedding iQ of X into J by
sending P E X(Q) to the linear equivalence class of the degree-zero divisor
[(P) - (Q)I-
We call the standard embeddings of X into J, and we let Too be the

set of torsion points on X in the standard embedding.
We now recall the Coleman-Kaskel-Ribet conjecture (see Theorem 1.4).

Theorem 5.1. For all prime numbers p &#x3E; 23,

{hyperelliptic branch points}
Before we can prove the conjecture, we need to review some more facts

about X and J. We begin with some definitions and elementary facts, all
of which can be found in [16].
The cuspidale subgroups C of J is the cyclic subgroup of J generated by

the class of the degree-zero divisor (0) - (oo) on X.
The Shimura subgroup E of J is the kernel of the map Jo (P) ~ Jl (p)

induced via Picard functoriality from the natural map Xi (p) - Xo(p).
Both C and E have order n := (p - 1)/(gcd(p - 1,12)).
The endomorphism ring of JQ contains (and in fact equals) the Hecke

algebra T generated by 2vP and by the Hecke operators Ti, with 1 prime and
different from p.
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The Eisenstein ideal is the ideal 3 of T generated by wp + 1 and the
differences Ti - (l + 1) for 1 =A p. A maximal ideal m of T is Eisenstein if
it contains 3.

The subgroup

contains both C and E. We list below some additional properties of this
subgroup which we will need-see [9] for a complete picture of J[31 as a
Galois module.

In addition to the above definitions and relatively simple facts, the proof
of Theorem 5.1 will also require the following ten more difficult facts about
X and J. For the reader’s benefit, we provide references and/or sketch the
proofs for each of these facts.
1: J has good reduction outside p, and has purely toric (hence ordinary

semistable) reduction at p.
This is due to Igusa and Deligne-Rapoport. See [16, Theorem A.1] for
a discussion and references.

2: c
This is [16, Theorem 1].

3: If P E X(Q) n J(Q)tors, then P E 10, oo}.
When 37, 43, 67,163, this is a consequence of the fact that, by [16,
Theorem 7.1], X(Q) = 10, ool. For the four exceptional cases, see [7,
Proof of Proposition 1.2~.

4: The natural map Z -3 induces an isomorphism Z/nZ ~. T /5.
This is [16, II, Proposition 9.7].

5: is a free of rank 2.
This follows from the analysis in [16, Ch. II, §16-18], as noted in [25,
§3].

6: The set of torsion points of J(Q) that are unramified at all primes
above p is precisely 
This is [25, Proposition 3.3].

7: Let M be a finite torsion T[Gal(Q/Q)]-submodule of J(Q), and let V
be a Jordan-Hbider factor of M. Let m be the maximal ideal in T that
annihilates V and consider V as a representation of Gal((a/Q) over the
field T/m. Ifm is Eisenstein, then V is one-dimensional and isomorphic
to either Z/lZ or Pl, where 1 is the characteristic of T/m. If m is
not Eisenstein, then V is isomorphic to the standard two-dimensional
irreducible representation pm : Gal(Q/Q) -~ GL2 (k) attached to m.
See [16, Chapter II) for a proof, and [25, Theorem 2.1] for a discussion
of the proof.

8: Suppose 11 7~ and let I be an inertia subgroup at 1 of Gal(Q/Q). If M
is a such that M C J[J], then M is ordinary good.
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This follows from Fact 7, together with results of Oort and Tate on finite
flat group schemes of prime order. See [29, Proposition 2.3, (v) ~ (i)]
for details.

9: If m p, then pm is not finite at p in the sense of [28, §2.8].
This is a consequence of Mazur’s level-lowering theorem (see [26, The-
orem 1.1]), since if p,m were finite at p, it would have to be modular of
level 1, which is impossible.

10: If m I p, then pm(I) is non-abelian for every inertia group I of
Gal(Q /Q) at p.
We sketch an argument similar to the one given in [29, §4, (1-2)]: Let M
be the T/m[I]-module giving rise to pm. Then M is ordinary semistable
as a Z [I]-module, so that M has a filtration 0 - M’ -~ M --~ M" -~ 0
in which I acts trivially on M" and on M’ via x. As in the proof of
Proposition 3.7, if the action of I on M is abelian, then Sah’s lemma
(Lemma A.2) shows that M = M’ (B M", and therefore M is finite at
p. This contradicts Fact 9.

Proof of Theorem 5.1:
Let P be a point of X such that ioo (P) is torsion.
When (X, P) is exceptional, the result follows from [7, Proposition l.lJs.

So we will assume from now on that (X, P) is not exceptional.

By Fact 3, it is enough to prove that P is defined over Q.

Cl aim 1: P is unramified at p.

Proof.
Let I be an inertia subgroup at p of Gal(Q/Q). Since J has ordinary

semistable reduction at p by Fact 1, and since (X, P) is not exceptional, it
follows from Theorem 3.6 that l(l) fixes P. Applying the same argument
to every conjugate of P, we see that I acts on the T[Gal(Q/Q)]-module M
generated by P through its abelian quotient 1/1(1).

If p divides the order of M, then I acts through an abelian quotient
on some Jordan-H6lder factor V of M associated to a maximal ideal m of
residue characteristic p. But Fact 10 tells us that the action of I on V is

necessarily non-abelian, a contradiction.

8We briefly recall the argument. For p ~ 37, the fact that the hyperelliptic branch points
are torsion points in the embedding follows directly from the fact that in those cases, wp
coincides with the hyperelliptic involution. For if P is fixed by wp, then since the hyperelliptic
involution acts as -1 on J, we have

which is torsion. The case p = 37 is more complicated, and follows from explicit calculations
found in [18, ~5].
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Therefore M has order prime to p. By Lemma 3.3, it follows that I acts
trivially on M. Since this is true for all inertia groups I at p, it follows that
P is unramified at p. 0

Claim 2: 

Proof. This follows from Fact 6 and Claim 1. 0

Claim 3: If P is not a cusp then g+ = 0.

Proof. Let Q := Since wp interchanges the two cusps on X, there is
a unique cusp on X+, which we also call oo. So the fiber of the degree two
map 7r : X -+ X+ over oo is just 10, oo}. Let J+ be the Picard (Jacobian)
variety of X+. The fact that J+ is also the Albanese variety of X+ implies
there is a commutative diagram

If 7r* : J+ -~ J denotes the map induced by Picard functoriality, then
the composite map ~r* o,7r. : J - J is the map 1 + wp. Also, 7r* is injective;
this is a consequence (see [3, Lemma 6]) of the fact that wp has fixed points.
Since J contains 1 + wp, it follows that if Q E J[J], then Q is sent to zero
under the projection -7r,,.

Therefore, when g+ &#x3E; 0 (so that the map X+ - J+ is an embed-

ding), we have P = 0 or P = oo as desired. 0

Cl aim ,~ : P is unramified at 2 and 3.

Proof. By Claim 3, we may assume that g+ = 0, i.e., that p belongs to
the set of prime numbers { 23,29,31,41,47,53,71}. An explicit calculation
shows that 3 and that 2 n if and only if p = 41.

So by Claim 2 and Fact 7, we are reduced to the case p = 41, where we
have n = 10. We need to show in this case that .P is unramified at 2. Since
4 it follows from Fact 5 that M2 is killed by 2.

Let I be an inertia group of Gal(Q/Q) at 2, and suppose there exists
~ E I such that P. Since J has good reduction at 2, 1 acts trivially
on Mnon-2? so a~Q - Q E M2, and therefore Q) = 0. It follows
that the divisor 2 (aP) - 2 (P) is principal on X, so (X, P) is exceptional,
a contradiction. D

Claim 5: P is defined over Q.
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Proof. By Fact 7(i) and Claim 2, P is unramified at all primes 1 { n. It
suffices to show that P is unramified at &#x3E; 5 such tat 1 1 n. Fix

such a prime 1 and an inertia group I at 1 in Gal(Q/Q). Let M be the

Z[I]-submodule of J[J] generated by Q. By Fact 8, M is an ordinary
good Z[I]-module. Also, since (X, P) is not exceptional, it follows from
Lemma 2.7 that M is almost unramified. Theorem 3.6 then implies that I
acts trivially on M, as desired. 0

This concludes the proof of Theorem 5.1.

For generalizations to torsion points on X in noncuspidal Albanese em-
beddings into J, and to certain other modular curves, plus an application
to Mordell-Weil ranks, see [2, §4].

Appendix A. Some elementary algebraic results

For the sake of completeness, we give the statements and proofs of some
elementary algebraic results used in this paper.

Lemma A.1. Let G be a groups, and let M be a finite Z~G~-module of order
prime to p. Suppose that the action of G on M factors through a finite p-
group G’, and that (g - 1)2 = 0 for all g E G. Then G acts trivially on
M.

Proof. Let q = p~‘ be the order of G’, and let g E G. Then

by the binomial theorem. Since M has order prime to p, it follows that

(g-1)M=0. 0

The following elementary result from group cohomology is known as

Sah’s lemma. Our proof is adapted from [15, Lemma 8.8.1].
Lemma A.2 (Sah’s lemma). Let G be a group, let M be a G-module, and
let g be in the center of G. Then H1 (G, M) is killed by the endomorphism
x H of M. In particular, if this endomorphism is an automorphism,
then H1(G,M) = 0.

Proof. Let f : G - M be a 1-cocycle. Then for all h E G,

Therefore

But the cocycle condition implies that f (1) = 0, so
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and therefore (g - 1) f (h) _ (h - so that (g - 1) f is a coboundary.
0

Recall that a monoid is a a set S together with an associative composition
law on S and an identity element e E S.
We denote by N the monoid consisting of all nonnegative integers.
If a,, ... , ak E N, we denote by (al, ... , ak) the monoid

It is the smallest submonoid of N containing a1, ... , ak. D

The following result is sometimes called the "postage stamp lemma" :

Lemma A.3. If a, b are relatively prime positive integers and m is any
integer such that m &#x3E; (a - 1 ) (b - 1), then m E (a, b~ .
Proof. Since no two of the b integers m - ar (0  r  b - 1) are congruent
modulo b, one of them must be divisible by b, say m - aro = bso. As

we must have so &#x3E; 0, so that m E (a, b) as claimed. 0

Appendix B. The exceptional case

In this appendix, K denotes a finite unramified extension of Qp with
2, and is a curve of genus at least 2, embedded in its Jacobian J

via a K-rational Albanese map.

The following result, which is essentially [29, Proposition 3.1], was used
in the proof of Theorem 4.1.

Proposition B.1. Suppose J has ordinary semistable reduction. Let P E
X (K) be a torsion points, and suppose (X, P) is exceptional. Then:
la. a2P = P for all o- E I.
lb. The group 7(1) ftxes P.
2. If J has good ordinary reduction, then P is unramified.

Proof. Let M be the Z[I]-submodule of J generated by P. Since P is a
Weierstrass point on X, so is and therefore the divisors 2 (P) and 
on X are linearly equivalent for all o- E I. It follows that 2(~ ~ 1).P = 0
in M. Applying the same argument to every conjugate of P, we see that
I acts trivially on 2M. In particular, since p is odd, (~ - = 0 for all
a

Also note that by Lemma A.1, acts trivially on lVlnon-p, and therefore
I acts on M through its quotient 

If J has ordinary good reduction, then (a~ -~ 1 ) Mnon-p - 0 for all o- E I
and therefore I acts trivially on M as desired.
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In general, since M is ordinary semistable, we have (a-l)2 mnon-p = 0 for
all a Since { ~ - = 0 as well, we see that in fact (a - 1 ) 2 M = 0
for all a E I. Adding this to the relation 2 (o- - 1 ) M = 0, we find that

- 

= 0 for all a E I. This proves (1a). Statement (lb) now follows
from the fact that l(l) is contained in the subgroup of I topologically
generated by E 7}. Explicitly: I acts on M through a finite
quotient I’ of Itame isomorphic to for some n &#x3E; 1. The image of a in
I’ has norm 1 in Fp if and only if a E I ( 1 ) . The result now follows from
the fact that an element of F*. is a square if and only if its norm to Fp is
a square. D
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