This work is essentially devoted to construct effective examples of pairs of continued fractions with bounded quotients, such that and are -linearly independent, and satisfying Littlewood’s conjecture.
Ce travail est essentiellement consacré à la construction d’exemples effectifs de couples de nombres réels à constantes de Markov finies, tels que et soient -linéairement indépendants, et satisfaisant à la conjecture de Littlewood.
@article{JTNB_2003__15_1_249_0, author = {de Mathan, Bernard}, title = {Conjecture de {Littlewood} et r\'ecurrences lin\'eaires}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {249--266}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {1}, year = {2003}, mrnumber = {2019015}, zbl = {1045.11048}, language = {fr}, url = {http://archive.numdam.org/item/JTNB_2003__15_1_249_0/} }
TY - JOUR AU - de Mathan, Bernard TI - Conjecture de Littlewood et récurrences linéaires JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 249 EP - 266 VL - 15 IS - 1 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_2003__15_1_249_0/ LA - fr ID - JTNB_2003__15_1_249_0 ER -
de Mathan, Bernard. Conjecture de Littlewood et récurrences linéaires. Journal de théorie des nombres de Bordeaux, Volume 15 (2003) no. 1, pp. 249-266. http://archive.numdam.org/item/JTNB_2003__15_1_249_0/
[1] Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39-66. | MR | Zbl
, , , ,[2] On the product of three homogeneous linear forms and indefinite ternary quadratic forms. Philos. Trans. Roy. Soc. London, Ser. A, 248 (1955), 73-96. | MR | Zbl
, ,[3] Simultaneous rational approximations to algebraic numbers. Bull. Amer. Math. Soc. 67 (1961), 197-201. | MR | Zbl
,[4] On a problem in simultaneous Diophantine approximation: Littlewood's conjecture. Acta Math. 185 (2000), 287-306. | MR | Zbl
, ,[5] Trcanscendance des fractions continues de Thue-Morse. J. Number Theory 73 (1998), 201-211. | MR | Zbl
,[6] On simultaneous approximations of two algebraic numbers by rationals. Acta Math. 119 (1967), 27-50. | MR | Zbl
,[7] Approximation to algebraic numbers. Enseignement math. 17 (1971), 187-253. | MR | Zbl
,