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Well-poised hypergeometric service
for diophantine problems of zeta values

par WADIM ZUDILIN

RESUME. On montre comment les concepts classiques de séries
et intégrales hypergéométriques bien équilibrées devient crucial
dans l’étude des propriétés arithmétiques des valeurs de la fonction
zêta de Riemann. Par ces arguments, on obtient (1) un groupe
de permutations pour les formes linéaires en 1 et 03B6(4) = 03C04/90
donnant une majoration conditionnelle de la mesure d’irrationalité
de 03B6(4) ; (2) une récurrence d’ordre deux pour 03B6(4) semblable
à celles introduites par Apéry pour 03B6(2) et 03B6(3), ainsi que des
récurrences d’ordre réduit pour les formes linéaires en des valeurs
de la fonction zêta aux entiers impairs ; (3) un gros groupe de
permutations pour une famille d’intégrales multiples généralisant
les intégrales dites de Beukers pour 03B6(2) et 03B6(3).

ABSTRACT. It is explained how the classical concept of well-poised
hypergeometric series and integrals becomes crucial in studying
arithmetic properties of the values of Riemann’s zeta function. By
these well-poised means we obtain: (1) a permutation group for
linear forms in 1 and 03B6(4) = 03C04/90 yielding a conditional upper
bound for the irrationality measure of 03B6(4); (2) a second-order
Apéry-like recursion for 03B6(4) and some low-order recursions for
linear forms in odd zeta values; (3) a rich permutation group for
a family of certain Euler-type multiple integrals that generalize
so-called Beukers’ integrals for 03B6(2) and 03B6(3).

1. Introduction

In this work, we deal with the values of Riemann’s zeta function (zeta
values)

at integral points s = 2, 3, 4, .... Lindemann’s proof of the transcendence
of ~r as well as Euler’s formula for even zeta values, summarized by the

Manuscrit reçu le 5 juin 2002.
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inclusions ~ (2n) E Q7r2n for n = 1, 2, ... , yield the irrationality (and tran-
scendence) of ~’(2), ~’(4), ~(6), .... The story for odd zeta values is not so
complete, we know only that:

~ ~’ (3) is irrational (R. Apery [Ap], 1978);
~ infinitely many of the numbers ((3), ~’ (5), ~ (7), ... are irrational (T. Ri-

voal ~Ril], [BR], 2000);
. at least one of the four numbers ((5), ((7), ((9), ((11) is irrational1 -

(this author [Zu3], [Zu4], 2001).
The last two results are due to a certain well-poised hypergeometric’ con-
struction, and a similar approach can be put forward for proving Ap6ry’s
theorem (see [Ri3] and [Zu5] for details).

After remarkable Apery’s proof [Ap] of the irrationality of both ((2) and
~ (3), there have appeared several other explanations of why it is so; we are
not able to indicate here the complete list of such publications and mention
the most known approaches:

~ orthogonal polynomials [Bel], [Hat] and Pade-type approximations
[Be2], [Sol], [So3];

~ multiple Euler-type integrals [Bel], [Hat], [RV2];
~ hypergeometric-type series [Gu], [Nel];
~ modular interpretation [Be3].

G. Rhin and C. Viola have developed a new group-structure arithmetic
method to obtain nice estimates for irrationality measures of ~’(2) and ((3)
(see [RV1], [RV2], [Vi]). The permutation groups in [RV1], [RV2] for multi-
ple integrals can be translated into certain hypergeometric series and inte-
grals, and this translation [Zu4] leads one to classical permutation groups
(due to F. J. W. Whipple and W. N. Bailey) for very-well-poised hypergeo-
metric series.
The aim of this paper is to demonstrate potentials of the well-poised

hypergeometric service (series and integrals) in solving quite different prob-
lems concerning zeta values. Here we concentrate on the following features:

~ hypergeometric permutation groups for ((4) (Sections 3-5) and for
linear forms in odd/even zeta values (Section 8);

~ a conditional estimate for the irrationality measure of ~ (4) via the
group-structure arithmetic method (Section 6);

. an Ap6ry-like difference equation and a continued fraction for ((4)
(Section 2) and similar difference equations for linear forms in odd
zeta values (Section 7);

’The first record of this type, at least one of the nine numbers ((5), C(7), C(21) is irrational,
is due to T. Rivoal [Ri2].

2We refer the reader to [Ba], Section 2.5, or to formula (69) for a formal definition, to [An]
for a nice historical exposition, and to Sections 2-8 below for number-theoretic applications.



595

. Euler-type multiple integrals represented very-well-poised hypergeo-
metric series and, as a consequence, linear forms in odd/even zeta
values (Section 8).

All these features can be considered as a part of the general hypergeometric
construction proposed recently by Yu. Nesterenko [Ne2], [Ne3].

Hypergeometric sums and integrals of Sections 3-6 are prompted by
Bailey’s integral transform (Proposition 2 below), and it is a pity that the
permutation group for ~(4) (containing 51840 elements!) leads to an esti-
mate for the irrationality measure of ~(4) under a certain (denominator)
conjecture only. We indicate this conjecture (supported by our numerical
calculations) in Section 6. The particular case of the construction is pre-
sented in Section 2; this case can be regarded as a toy-model of that follows,
and its main advantage is a certain nice recursion satisfied by linear forms
in 1 and ~(4).

Section 7 is devoted to difference equations for higher zeta values; such
recursions make possible to predict a true arithmetic (i.e., denominators)
of linear forms in zeta values.
The subject of Section 8 is motivated by multiple integrals

that were conjecturally Q-linear forms in odd/even zeta values depending
on parity of k (see [VaD]). D. Vasilyev [VaD] required several clever but
cumbersome tricks to prove the conjecture for k = 4 and k = 5. However,
one can see. no obvious generalization of Vasilyev’s scheme and, in [Zu4], we
have made another conjecture, yielding the old one, about the coincidence
of the multiple integrals with some very-well-poised hypergeometric series.
We now prove the conjecture of [Zu4] in more general settings and explain
how this result leads to a permutation group for a family of multiple inte-
grals.

Acknowledgements. I am grateful to F. Amoroso and F. Pellarin for
their kind invitation to contribute to this volume of Actes des 12èmes ren-
contres arithmétiques de Caen (June 29-30, 2001). I am kindly thankful’
to T. Rivoal for his comments and useful discussions on the subject and to
G. Rhin for pointing out the reference [Co], where the recurrence for ((4)
was first discovered by means of Apery’s original method. Special gratitude
is due to E. Mamchits for his valuable help in computing the group 6 of
Section 5 for linear forms in 1, C(4).
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2. Difference equation for ((4)
In his proof of the irrationality of ((3), Ap6ry consider the sequences un

and vn of rationals satisfying the difference equation

A prior£, the recursion (1) implies the obvious inclusions n!3vn E Z,
but a miracle happens and one can check (at least experimentally) the
inclusions

for each n = 1, 2, ... ; here and later, by Dn we denote the least common
multiple of the numbers 1, 2, ... , n (and Do = 1 for completeness), thanks
to the prime number theorem

The sequence

is also a solution of the difference equation (1), and it exponentially tends
to 0 as n -3 00 (even after multiplying it by Dn). A similar approach has
been used for proving the irrationality of ((2) (see [Ap], [Po]), and several
other Ap6ry-like difference equations have been discovered later (see, e.g.,
[Be4]). Surprisingly, a second-order recursion exists for C(4) and we are
now able to present and prove it by hypergeometric means.

Remark. During preparation of this article, we have known that the differ-
ence equation for C(4), in slightly different normalization, had been stated
independently by V. Sorokin [So4] by means of certain explicit Pade-type
approximations. Later we have learned that the same but again differ-
ently normalized recursion had been already known [Co] in 1981 thanks
to H. Cohen and G. Rhin (and Ap6ry’s original ’acc6l6ration de la conver-
gence’ method). We underline that our approach presented below differs
from that of [Co] and [So4]. We also mention that no second-order recursion
for C(5) and/or higher zeta values is known.

Consider the difference equation

where
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with the initial data

for its two independent solutions Un and vn.
Theorem 1. For each n = 0,1, 2, ... , the numbers Un and vn are positive
rationals satisfying the inclusions

and there holds the limit relation

Application of Poincar6’s theorem then yields the asymptotic relations

and (see [Zul], Proposition 2)

since the characteristic polynomial a2 - 270A - 27 of the equation (3) has
zeros 135±78B/3 = (3f2~)3. Thus, we can consider vn/Un as convergents
of a continued fraction for ((4) and making the equivalent transform of the
fraction ([JT], Theorems 2.2 and 2.6) we obtain
Theorem 2. There holds the following continued-fraction expansion:

where the polynomial b(n) is defined in (4).
Unfortunately, the linear forms

do not tend to 0 as n -~ 00.3
A motivation of a hypergeometric construction considered below leans

on the two series
- - - "I2

(Gutnik’s form of Apery’s sequence [Gu], [Nel]), and

3For a simple explanation why ~(4) is irrational, see [Han].
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(Ball’s sequence), and on the coincidence of these series proved by T. Rivoal
[Ri2], [Ri3] with a help of the difference equation (1). These arguments
make possible to give a new ’elementary’ proof of the irrationality of ((3)
(see [Zu5] for details).

Consider the rational function

and the corresponding series

In some sense, the series (11) is a mixed generalization of both (8) and (9).

Lemma 1. There holds the equality

Proof. The polynomials

are integral-valued and, as it is well known,

where P"(t) is any of the polynomials (13).
The rational function

has also ’nice’ arithmetic properties. Namely,

that allow to write the following partial-fraction expansion:
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Hence, for j = 1, 2, ... we obtain -

Therefore the inclusions (14), (16), (17) and the Leibniz rule for differenti-
ating a product imply that the numbers

satisfy the inclusions

Now, writing down the partial-fraction expansion of the rational func-
tion (10),

we obtain that the quantity

has the desired form (12) with

Finally, using the inclusions (19) and
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we deduce that Un, Dn U;~’, E Z as required. 0

Now, with a help of Zeilberger’s algorithm of creative telescoping 
Chapter 6) we get the rational function (certificate) ~S’n(t) := sn(t)Rn(t),
where

satisfying the following property.

Lemma 2. For each n = 1, 2, ... , there holds the identity

where the polynomial b(n) is given in (4).

Proof. Divide both sides of (24) by and verify the identity
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where is given in (23). 0

Lemma 3. The quantity (11) satisfies the difference equation (3) for n =
1,2,....

Proof. Since Rn(t) = O(t-3) and Sn(t) = O(t-2) as t -3 oo for n &#x3E; 1,
differentiating identity (24) and summing the result over t = 1, 2, .. we
arrive at the equality

(n + b(n)Fn - 3n 3(3n - 1) (3n + = Sn (1) -
It remains to note that, 1, both functions and Sn(t) _
sn(t)Rn(t) have second-order zero at t = 1. Thus Sn(1) = 0 for ~c = 1, 2, ...
and we obtain the desired recurrence (3) for the quantity (11). 0

Lemma 4. The coefficients Un, Un, Un, Un", Vn in the representation (12)
satisfy the difference equation (3) for n = 1, 2, ....
Proof. Write the partial-fraction expansion (20) in the form

where the formulae (18) remain valid for all J~ E Z a,nd j = 1, 2, 3, 4. Mul-
tiply both sides of (24) by (t + k)4, take (4 - j)th derivative of the result,
substitute t = -k and sum over all k E Z; this procedure yields that, for
each j = 1, 2, 3, 4, the numbers (21) written as

satisfy the difference equation (3). Finally, the sequence

also satisfies the recursion (3). 0

Since 
’

- .. - - - - - - , -

in accordance with (21), (22) we obtain

hence as a consequence of Lemma 4 we arrive at the following result.

Lemma 5. There holds the equality
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The sequences ~c" := Un/6 and vn := Vn/6 satisfy the difference equa-
tion (3) and initial conditions (5); the fact IFni 2013~ 0 as n - oo, which yields
the limit relation (7), will be proved in Section 4. This completes our proof
of Theorem 1.

The conclusion (6) of Theorem 1 is far from being precise; in fact, (ex-
perimentally) there hold the inclusions

and, moreover, there exists the sequence of positive integers 
0,1, 2, ... , such that

This sequence can be determined as follows: if vp is the order of prime p in
(3n)!/n!3, then

here and below and {x} := x - LxJ denote respectively the integral and
fractional parts of a real number x. For primes p &#x3E; we obtain the

explicit (simple) formula

hence

where := r’(x)/r(x). Thus, we obtain that the linear forms

do not tend to 0 as n ~ oo.

3. Well-poised hypergeometric construction

Consider the set of eight positive integral parameters

satisfying the conditions
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and assign to h the rational function

In the last representation we pick out the rational functions

of the form (15), (13), having some nice arithmetic properties ([Zu4], Sec-
tion 7). ’

It is easy to verify that, due to (26), for the rational function (28) the
difference of numerator and denominator degrees is equal to 3, hence

The series

produces a linear form in 1 and ~(4).
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Lemma 6. The quantity F(h) is a linear form in 1 and ((4) with rational
coefficients.

Proof. Order the parameters hl, ... , h6 as hi  . ~ ~  hs and consider the
partial-fraction expansion of the rational function (28):

where

Then we obtain

with

and the well-poised origin of the series (30) (namely, the property R(-t -
ho) = -R(t), hence Ajk = by (32), cf. [Zu4], Section 8,
with r = 2 and q = 6) yields A2 = A4 = 0, while the residue sum theorem
accompanied with (29) implies Al = 0 (cf. [Nel], Lemma 1). 0

Remark. The question of denominators of the rational numbers A3 and Ao
that appear as the coefficients in F(h) can be solved by application of
Nesterenko’s denominator theorem [Ne3] (announced by Yu. Nesterenko in
his Caen’s talk). Namely, consider the set

then,
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where mi &#x3E; " - &#x3E; m5 are the five successive maxima of the set N.
Unfortunately, we have not succeeded in using the inclusion (33) for

arithmetic applications; actually, our experimental calculations show that
the stronger inclusion for the linear forms F(h), indicated at the beginning
of Section 6, holds.

Using standard arguments, the property (29) and the fact that R(t)
has second-order zeros at integers t = 1 - h_i}, I
one deduces the following hypergeometric-integral representation of the se-
ries (30).
Lemma 7 (cf. [Nel], Lemma 2). There holds the equality

with any tl 1 - hi  tl 

The series (30) as well as the corresponding hypergeometric integral (34)
are known in the theory of hypergeometric functions and integrals as very-
well-poised objects, i.e., one can split their top and bottom parameters in
pairs such that

and the second parameter has the special form 1 

Remark.. As it is easily seen, the sequence Fn of Section 2 corresponds (after
a suitable shift of the summation parameter t) to the choice

of the parameters h. Hence the equalities Un - U~’ = 0 in the
representation (12) can be deduced from Lemma 6.

4. Asymptotics
We take the new set of positive parameters

satisfying the conditions



606

and for each n = 0,1, 2, ... relate them to the old parameters by the for-
mulae

Then Lemma 6 yields that the quantities Fn = := F(h) are linear
forms in 1 and ((4) with rational coefficients, say

and the goal of this section is to determine the asymptotic behaviour of
these linear forms as well as their coefficients un and vn as n - oo.
To the set (36) assign the polynomial

and the function

defined in the cut T-plane C B ’1-I}] U where

"1i ~ ’12 ~ ... ~ "16 denotes the ordered version of the set 771, ’TJ2, ... , ’16.
The first condition in (37) implies that (39) is a fifth-degree polynomial;

moreover, the symmetry under substitution "10 - T and the second
condition in (37) yield that this polynomial has zeros

The last four zeros can be easily determined by solving a certain biquadratic
(in terms of r~o/2 - T) equation. Set

and
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Proposition 1. The follourlng limit relations hold:

Proof. The proof is based on application of the saddle-point method to
the integral representation of Lemma 7 for the quantities F" and a similar
integral representation (see formula (48) below) for the coefficients U,,; the
fact that both limits in (42) are equal follows immediately from the limit
relation 

’I., -

since -Co  0  Cl under the conditions (37).
Without loss of generality, we will restrict ourselves to the ’most sym-

metric’ case (35), i.e.,

that corresponds to the linear forms in 1, C(4) constructed in Section 2.
In the case (43), the zeros (40) of the corresponding polynomial (39) are

as follows:

By Lemma 7,

with any ti E 1R, -n  ti  0. Using the asymptotic formula

for z E C with Re z = const &#x3E; 0, taking ti = -nTo and changing variables
t = -nT, after necessary transformations we obtain
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as n -+ 00, where

Since

and To is a zero of the polynomial (39) (which is (T-3)2(T-1)6-T2(T-2)s
in the restricted case), we conclude that f’(TO) = 0 and To is the unique
maximum of the function Re f (T) on the contour. Thus the integral (44) is
determined by the contribution of the saddle-point To (see [Br], Section 5.7):

hence

This proves the limit relation (41).
In the neighbourhood of t = -k, where k = n + 1, ... , 2n+ 1, the function

R(t) has the expansion

by (31). On the other hand,

about t = -k for J~ E Z. Therefore,
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and if ,C is a closed clockwise contour surrounding points t = -n - 1, ... ,
-2n - 1, then

Taking the rectangle with vertices ±it2 ± N, for some fixed real t2 &#x3E; 0 and

any N &#x3E; 2n + 1, as the contour ,C and using the estimates

on the lateral sides of the rectangle, from (47) we deduce that

where the constant in O(N-2) depends on t2 only. Tending N - oo and
making the substitution t H -t - ho = -t - (3n + 2) in the first integral,
we obtain

(cf. [Zu2], Lemma 3.1). Finally, take t2 = -nsi = -nImTl, change the
variable t = -nT and apply the asymptotic formula

(see [Br], Section 6.5, and [Zu2], Lemma 3.2), to get from (48) the expansion
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Since

for r E C with Im T = S 1 &#x3E; 0, we obtain

By (45) and the definition of the point 71 (that is the zero of the polyno-
mial (39)), hence /’(71) - 4xiTi = 0, we conclude that 7 = 71 is the unique
maximum of the function on the line Im T = sl. Therefore,
the saddle-point method says that the asymptotics of the integral in (49) is
determined by the contribution of the point T = Tl that yields the desired
limit relation

The proof of Proposition 1 is complete. 0

Remark. The limit relation (46) yields that -~ 0 as n - oo, and this is
the fact that we have promised to prove for Theorem 1 (see the paragraph
after Lemma 5). To be honest, the fact, that the asymptotics of the linear
forms and their coefficients in the case (35) is determined by the zeros
(3 t 2v’3)3 of a quadratic polynomial with integral coefficients, gave us the
idea to look for a second-order difference equation.

5. Group structure for ((4)
This section can be viewed as a continuation of the story in [Zu4], Sec-

tions 4-6, where we explain the Rhin-Viola group structures for ~(2) and
~’(3) by means of classical hypergeometric identities.
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Proposition 2 (Bailey’s integral transform [Ba], Section 6.8, formula (1)).
There holds the identity

where k = 1 + 2a - c - d - e, and the parameters are connected b y the
relation

By Lemma 7 the transform (50) rearranges the parameters h as follows:

Consider the set of 27 complementary parameters e,

and set

Then Bailey’s transform can be written as follows:

where 6 from (51) is the following second-order permutation of the param-
eters (52):

We can also write the transform (53) in the form



612

Further, the h-trivial group (i.e., the group of permutations of the pa-
rameters hl, h2, ... , h6) is generated by second-order permutations of hk,
1  k  5, and h6. The action of these five permutations on the set (52) is
as follows:

and the quantity

(due to the definition (28)) is stable under the action of (56). Setting

(58) 6 = 6 (e) : 1" (e01 , eo2, eo4, e06 , e02, e03, e05, e12, e15, e24 , e36 }
and combining the above stability results we arrive at the following fact.

Lemma 8. The quantity

is stable under the action of the group

Moreover, the quantities h-l and

are also 0-stable.

Proof. Routine calculations show the stability of H(e)/II(e) under the ac-
tion of b, ~2, ~3, ~14, ~5 with a help of (55) and (57). Hence H(e)/II(e) is
stable under the action of the e-permutation group generated by these six
permutations (54), (56).
The stability of h_1 under the action of (56) is obvious, and b does not

change the parameter h_1 by (51). Finally,

that yields the stability of E(e) under the action of 6. The proof is com-
plete. 0
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With the help of a C++ program we have discovered that the group 6 con-
sists of 51840 elements, hence the left factor includes 51840/6! = 72
left cosets; here 6e is identified with the h-trivial group b2 , b3, 4, 5).
It is interesting to mention that the group 60 acting trivially on the set (58)
consists of just 4 elements: go = id,

Rerraark. In the most symmetric case (35) all complementary parameters
(52) are equal to n that means that any permutation from 0 does not
change the quantity F(la). This fact explains why do we dub this case as
tmost symmetric’.

6. Denominators of linear forms

As we have mentioned in Remark to Lemma 6, ‘trivial’ arithmetic (33)
of the linear forms H(e) = F(h) does not lead us to a qualitative result
for ((4). We are able to estimate the irrationality measure of ~(4) under the
following condition, which we have checked numerically for several values
of h satisfying (26) and (27).
Denominator Conjecture. There holds the inclusion4

where mi &#x3E; m2 &#x3E; m3 &#x3E; rn4 are the four successive maxima of the set e
in (52) and

with

41n the most symmetric case (35) this conjecture reduces to the conjecture (25) of Section 2.
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If this conjecture is true, then taking any element g e 6 and writing
conclusion of Lemma 8 as

we deduce that, for any prime p &#x3E; 

where 9C = 6 (ge) and ordp (u( (4) - v) := min{ordp u, ordp v} for rational
numbers u, v. Finally, setting

with

from (59) we obtain the inclusion

Now, to each = 0,1, 2, ... assign the parameters h in accordance
with (38) and set

so that the set of complementary parameters e ~ n corresponds to the set h.
Then, in the above notation, we can write the inclusion (60) as

The asymptotic behaviour of the linear forms H(en) E Q((4)+Q and their
coefficients as n - oo is determined by Proposition 1; in addition,

by the consequence (2) of the prime number theorem, while the arithmetic
lemma of Chudnovsky-Rukhadze-Hata (see, e.g., [Zu2], Lemma 4.4) yields
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where

is a 1-periodic function.
Recalling the notation of Proposition 1 and combining its results with

saying above, as in [RV2], the proof of Theorem 5.1, we arrive at the fol- -
lowing statement.

Proposition 3. Under the denominator conjecture, let

If Co &#x3E; C2, then the irrationality exponent of C(4) satisfies the estimate

Recall that the irrationality of a real irrational num-
ber a is the least possible exponent such that for any e &#x3E; 0 the inequality

has only finitely many solutions in integers p, q with q &#x3E; 0.

With a help of Proposition 3 we are able to state the following conditional
result.

Theorem .3. The irrationalaty exponent of C(4) satisfies the estimate

provided that the denominator conjecture holds.

Proof. Taking q = (68,57; 22,23,24,25,26,27) we obtain

and .

= 27 + 26 + 25 + 24 - 69.76893283... = 32.23106716....

Thus, application of Proposition 3 yields the desired estimate (61). 0



616

The estimate (61) can be compared with the ’best known’ estimate

which follows from the general result of Yu. Aleksentsev [Al] on approxi-
mations of ~r by algebraic numbers.5

7. Further difference equations for zeta values

A natural very-well-poised generalization of Ball’s sequence (9),

where n = 1, 2, ... , gives rise for searching difference equations satisfied by
both linear forms and their rational coefficients. Applying Zeilberger’s
algorithm of creative telescoping in the manner of Section 2 we deduce the
following result for the linear forms

Theorem 4. The numbers un, 7 Wn vn in the representation (63) are positive
rationals satisfying the third-order difference equation

with

5In fact, the result of [Al] is proved for approximations of 1r by algebraic numbers of sufficiently
large degree.
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where

The characteristic polynomial A3 _ 188A~ - 2368A + 4 of the difference
equation (64) determines the asymptotic behaviour of the linear forms (63)
and their coefficients as n - oo.
A similar (but quite cumbersome) fourth-order recursion with character-

istic polynomial a4 - 828A - 132246A + 260604A - 27 has been discovered
by us for the linear forms F7,n and their coefficients. These recursions allow
us to verify the inclusions

up to n = 1000, although we are able to prove that

where

using our arithmetic results [Zu2], Lemmas 4.2-4.4.
Another story deals with the quantities

where i4,, Wn, vn aare positive rationals. We have discovered a (quite cum-
bersome) fourth-order difference equation satisfied by i4,, wn, vn; its char-
acteristic polynomial is

As we have proved in [Zu2], Proposition 4.1, the following inclusions hold:
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where On is given in (66), while our calculations up to n = 1000 with a
help of the recursion mentioned above show that

What is a trick that makes arithmetic as it is?

8. Multiple-integral representation 
_

of very-well-poised hypergeometric series

In [Zu4], Section 9, we conjecture, for integer k &#x3E; 2, the coincidence of
the very-well-poised hypergeometric series (62) and the multiple integral

where Qo := 1 and

for k &#x3E; 1. The integrals J2,n and J3,n have been studied by F. Beuk-
ers [Bel] in the connection with Ap6ry’s proof of the irrationality of ((2)
and ((3). In (Zu4~, we prove the coincidence of F3~n and with the help of
Bailey’s identity ([Ba], Section 6.3, formula (2)) and Nesterenko’s integral
theorem ([Ne2], Theorem 2), and use similar arguments for showing that
F2,n = J2,n. For general integer k &#x3E; 2, the integrals (67) are introduced by
O. Vasilenko [VaO] who states several results for Jk,o. The cases k = 4,5
and an arbitrary integer n in (67) are developed by D. Vasilyev [VaD]; in
particular, he conjectures the inclusions

(cf. (65)), and proves them if k = 5.
There is a regular way to obtain difference equations for the quanti-

ties (67); it is a part of the general WZ theory developed by H. Wilf and
D. Zeilberger [WZ]. However, difference equations for and JS,n by these
means are out of calculative abilities of our computer, so we cannot use a
troutine matter’ to verify the identity Fk~n = even when J~ = 4, 5.
The aim of this section is to deduce the desired coincidence of (62)

and (67) from a general analytic result on a multiple-integral representation
of very-well-poised hypergeometric series.

6As it is mentioned by G. E. Andrews in [An], Section 16, "an entire survey paper could be
written just on integrals connected with well-poised series" . The following theorem would extend
this survey a little bit.
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Consider two objects: very-well-poised hypergeometric series

and multiple integrals

Theorem 5. For each k &#x3E; 1, there holds the identity

provided that

Remark. Condition (72) is required for the absolute convergence of the
series (69) in the unit circle (and, in particular, at the point (-1)~+i),
while condition (73) ensures the convergence of the corresponding multiple
integral (70). The restriction (74) can be removed by the theory of analytic
continuation if we write r(hj + for j = 1, k + 2 as Pochhammer’s
symbol when summing in (69).

In the case of integral parameters h, the quantities (69) are known to be
Q-Iineax forms in even/odd zeta values depending on parity of k &#x3E; 4 (see
[Zu4], Section 9). Therefore, if positive integral parameters a and b satisfy
the additional condition
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then the quantities (70) are Q-linear forms in even/odd zeta values. Spe-
cialization + 1 and b? = 2n + 2 gives one the desired coincidence
of (62) and (67). The choice aj = rn + 1 and bj = (r + 1)n + 2 in (70) (or,
equivalently, ho = (2r+1)~+2 and hj = rn+1 for j = 1, ... , k+2 in (69))
with the integer r &#x3E; 1 depending on a given odd integer k presents almost
the same linear forms in odd zeta values as considered by T. Rivoal in [Ril]
for proving his remarkable result on infiniteness of irrational numbers in _
the set ((3), ((5), ((7), ....

In addition, we have to mention, under hypothesis (75), the obvious
stability of the quantity

under the action of the (h-trivial) group 6k of order (k + 2)! containing all
permutations of the parameters hi, ... , This fact can be applied for
number-theoretic applications as in [RV1], [RV2] and Sections 5, 6 above. In
the cases k = 2 and lk = 3 the change of variables (Xk- 17 Xk) r- (1- xk,1-
xx-1) in (70) produces an additional transformation G of both (70) and (69);
for k &#x3E; 4 this transformation is not yet available since condition (75) is
broken. The groups (02, b) and (Ø3, b) of orders 120 and 1920 respectively
are known: see [Ba], Sections 3.6 and 7.5, for a hypergeometric-series origin
and [RV1], [RV2] for a multiple-integral explanation. G. Rhin and C. Viola
make a use of these groups to discover nice estimates for the irrationality
measures of ((2) and ((3). Finally, we want to note that the group 6k can
be easily interpretated as the permutation group of the parameters

as in Section 5 (see [Zu4], Section 9, for details).

Lemma 9. Theorerrc 5 is true if k = 1.

Proof. Thanks to a limiting case of Dougall’s theorem,

(see, e.g., [Ba], Section 4.4, formula (1)), provided that &#x3E; Re(hi +
h2 + h3) and hj is not a non-positive integer for j = 1, 2, 3. On the other
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hand, the integral on the right of (71) has Euler type, that is

provided that 1 + R.e ho &#x3E; Re(h1 + h2 + h3) and Re h2 &#x3E; 0. Therefore, .
multiplying equality (76) by the required product of gamma-functions we
deduce identity (71) if k = 1. 0

Renaark. If we arrange about Jo(ao) to be 1, the claim of Theorem 5 remains
valid if k = 0 thanks to another consequence of Dougall’s theorem ([Ba],
Section 4.4, formula (3)).
Lemma 10 ([Ne2], Section 3.2). Let and to E lf8 be numbers

satisfying the conditions

R,e ao &#x3E; ta &#x3E; 0, R,e a &#x3E; to &#x3E; 0, and Reb&#x3E; Reao+Rea.
Then for any non-zero z E C B (1, +00) the following identity holds:

where (-z)t = Izlteitarg(-z), _~  arg(-z)  1r for z E C B [0,+(0) and
arg(-z) = f:1r for z E (0,1~. The integrals on the right-hand side of (77)
converges absolutely. In addition, if lzl  1, both integrals in (77) can be
identified with the absolutely convergent Gauss hypergeorreetric series

Set ék = 0 for k even and Ek = 1 or -1 for k odd.

Lemma 11. For each integer k &#x3E; 2, there holds the relation

provided that Re ao &#x3E; to &#x3E; 0, Re ak &#x3E; to &#x3E; 0, Re bk &#x3E; Re ao -E- Ileak, and
the integral on the left converges.
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Proof. We start with mentioning that the first recursion in (68) and induc-
tive arguments yield the inequality

By the second recursion in (68), Qk = Qk-1 - (1 - zxk) for k &#x3E; 2, where

For each (xl, ... , xk-1) E (o,1)k-1, the number z is real with the property
z  0 for J~ even and 0  z  1 for J~ odd, since in the last case we have

by (78). Therefore, splitting the integral (70) over [0, 1]k = [0, 1]k-1 X [0, 1]
and applying Lemma 10 to the integral

we arrive at the desired relation. 0

Proo, f of Theorem 5. The case k = 1 is considered in Lemma 9. Therefore
we will assume that k &#x3E; 2, identity (71) holds for k - 1, and, in addition,
that

The restrictions (79) can be easily removed from the final result by the
theory of analytic continuation.
By the inductive hypothesis, for tEe with R,e t  0, we deduce that
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where the real number so &#x3E; 0 satisfies the conditions

and the absolute convergence of the last Barnes-type integral follows
from [Ne2], Lemma 3. Shifting the variable t + s in (80) (with a help
of the equality eEIc1rit . eEIc-l1ris = eA,-,7ri(t+s) - e6l"t), applying Lemma 11,
and interchanging double integration (thanks to the absolute convergence
of the integrals) we conclude that

where sl - so + to. Since R,e hk+2  1 and 0, -1, -2, ... , the last
Barnes-type integral has the following closed form by Lemma 10:
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Substituting this final expression in (81) we obtain

If k is even, we take = -1 in the first integral and êk-l = 1 in the
second one. Therefore the both integrals are equal to

that gives the desired identity (71). The proof of Theorem 5 is complete.
D

Another family of multiple integrals

is known due to works of V. Sorokin [So2], [So3]. Recently, S. Zlobin [Zll],
[ZI2] has proved (in more general settings) that the integrals (70) can be
reduced to the form (82) with z = 1. Therefore, Theorem 5 gives one a
way to reduce the integrals S(l) to the very-well-poised hypergeometric
series (69) under certain conditions on the parameters aj, b~, c~, and ri
in (82). In addition, Zlobin [Zll] shows that, for integral parameters in (82)
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satisfying natural restrictions of convergence, the integral S(z) is a Qfz-’]-
linear combination of modified multiple polylogarithms

Following a spirit of this section, we would like to finish the paper with
the following
Problem. Find a multiple integral over (0,1~5 that represents the series
defined in (30) (or, equavalently, the integral (34)) of Section 3.
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