We give an algorithm to compute the modular degree of an elliptic curve defined over . Our method is based on the computation of the special value at of the symmetric square of the -function attached to the elliptic curve. This method is quite efficient and easy to implement.
Nous donnons un algorithme pour calculer le degré modulaire d’une courbe elliptique définie sur . Notre méthode est basée sur le calcul de la valeur spéciale en du carré symétrique de la fonction attachée à la courbe elliptique. Cette méthode est assez efficace et facile à implémenter.
@article{JTNB_2003__15_3_673_0, author = {Delaunay, Christophe}, title = {Computing modular degrees using $L$-functions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {673--682}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {3}, year = {2003}, mrnumber = {2142230}, zbl = {1070.11021}, language = {en}, url = {http://archive.numdam.org/item/JTNB_2003__15_3_673_0/} }
TY - JOUR AU - Delaunay, Christophe TI - Computing modular degrees using $L$-functions JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 673 EP - 682 VL - 15 IS - 3 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_2003__15_3_673_0/ LA - en ID - JTNB_2003__15_3_673_0 ER -
Delaunay, Christophe. Computing modular degrees using $L$-functions. Journal de théorie des nombres de Bordeaux, Volume 15 (2003) no. 3, pp. 673-682. http://archive.numdam.org/item/JTNB_2003__15_3_673_0/
[1] Hecke operators on Γ0(m). Math. Ann. 185 (1970), 134-160. | EuDML | MR | Zbl
, ,[2] Twists of newforms and pseudo-eigenvalues of W-operators. Invent. Math. 48 (1978), 221-243. | EuDML | MR | Zbl
, ,[3] On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14 no. 4 (2001), 843-939. (electronic). | MR | Zbl
, , , ,[4] Iwasawa theory for the symmetric square of an elliptic curve. J. reine angew. Math. 375 (1987), 104-156. | EuDML | MR | Zbl
, ,[5] Advanced topics in computational algebraic number theory. Graduate Texts in Mathematics, 193, Springer-Verlag, New-York, 2000. | MR | Zbl
,[6] Algorithms for modular elliptic curves. Second edition, Cambridge University Press, 1997. | MR | Zbl
,[7] Computing the degree of the modular parametrization of a modular elliptic curve. Math. Comp. 64 (1995), 1235-1250. | MR | Zbl
,[8] An effective zero-free region. Ann. of Math. (2) 140 no. 1 (1994), 177-181. | MR | Zbl
, , ,[9] pari-gp, available by anonymous ftp.
, , , , ,[10] The special values of the zeta functions associated with cusp forms. Com. Pure Appl. Math. 29 (1976), 783-804. | MR | Zbl
,[11] Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 no. 3 (1995), 553-572. | MR | Zbl
, ,[12] Zeros of Dedekind zeta functions in the critical strip. Math. Comp. 66 (1997), 1295-1321. | MR | Zbl
,[13] Computing the modular degree of an elliptic curve. Experimental Maths 11 no. 4 (2003), 487-502. | MR | Zbl
,[14] Modular elliptic curves and Fermat's last theorem. Ann. of Math. (2) 141 no. 3 (1995), 443-551. | MR | Zbl
,[15] Modular parametrizations of elliptic curves. Canad. Math. Bull. 28 no. 3 (1985), 372-384. | MR | Zbl
,