Sur une condition suffisante pour l’existence de mesures p-adiques admissibles
Journal de théorie des nombres de Bordeaux, Volume 15 (2003) no. 3, p. 805-829

We give a new sufficient condition for the existence of admissible p-adic measures μ obtained from sequences of distributions Φ j (j0) with values in spaces of modular forms. We use the characteristic projection on the primary subspace associated to a non zero eigenvalue α of the Atkin operator U. Our condition is expressed in terms of congruences between the Fourier coefficients of the modular forms Φ j . We show how to verify these congruences and we give several applications. So we get a conceptual explanation for the Yu.Manin’s formulas for the distributions attached to the L-function, L f (s,χ)= n1 χ(n)a n n -s , of a primitive cuspform f= n1 a n q n S k (Γ 0 (N),ψ) of weight k2.

On donne une nouvelle condition suffisante pour l’existence des mesures p-adiques admissibles μ obtenues à partir de suites de distributions Φ j (j0) à valeurs dans les espaces de formes modulaires. On utilise la projection caractéristique sur le sous-espace primaire associé à une valeur propre non nulle α de l’opérateur U d’Atkin. Notre condition est exprimée en termes des congruences entre les coefficients de Fourier des formes modulaires Φ j . On montre comment vérifier ces congruences, et on traite plusieurs applications. On obtient donc une explication conceptuelle des formules de Yu.Manin pour les distributions attachées à la fonction L f (s,χ)= n1 χ(n)a n n -s d’une forme parabolique primitive f= n1 a n q n S k (Γ 0 (N),ψ) de poids k2.

@article{JTNB_2003__15_3_805_0,
     author = {Panchishkin, Alexei},
     title = {Sur une condition suffisante pour l'existence de mesures $p$-adiques admissibles},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux I},
     volume = {15},
     number = {3},
     year = {2003},
     pages = {805-829},
     zbl = {1078.11038},
     mrnumber = {2142237},
     language = {fr},
     url = {http://www.numdam.org/item/JTNB_2003__15_3_805_0}
}
Panchishkin, Alexei. Sur une condition suffisante pour l’existence de mesures $p$-adiques admissibles. Journal de théorie des nombres de Bordeaux, Volume 15 (2003) no. 3, pp. 805-829. http://www.numdam.org/item/JTNB_2003__15_3_805_0/

[AV] Yvette Amice, JACQUES VÉLU, Distributions p-adiques associées aux séries de Hecke. Astérisque 24-25 (1975), 119-131. | MR 376534 | Zbl 0332.14010

[B-SchP] S. Boecherer, R. Schulze-Pillot, On the central critical value of the triple product L-function. Seminaire de theorie des nombres, Paris (1993-94), Birkhäuser, 1996, 3-46. | Zbl 0924.11034

[Co] John Coates, On p-adic L-functions. Séminaire Bourbaki, 40ème année, 1987-88, no. 701 (1989), 177-178. | Numdam | MR 1040567 | Zbl 0706.11064

[Co-PeRi] John Coates, Bernadette Perrin-Riou, On p-adic L-functions attached to motives over Q. Advanced Studies in Pure Math. 17 (1989), 23-54. | MR 1097608 | Zbl 0783.11039

[Colm98] Pierre Colmez, Fonctions L p-adiques. Séminaire Bourbaki, 51 ème année, 1998-99, no. 851. | Numdam

[De-Ri] P. Deligne, K.A. Ribet., Values of Abelian L-functions at negative integers over totally real fields. Invent. Math. 59 (1980) 227-286. | MR 579702 | Zbl 0434.12009

[Jo] Fabienne Jory, Familles de symboles modulaires et fonctions L p-adiques. Thèse de Doctorat, Institut Fourier (Grenoble), 18 décembre 1998. http://www-fourier.ujf-grenoble.fr/THESE/ps/t92.ps.gz

[Hi85] Haruzo Hida, A p-adic measure attached to the zeta functions associated with two elliptic cusp forms I. Invent. Math. 79 (1985), 159-195. | MR 774534 | Zbl 0573.10020

[Hi93] Haruzo Hida, Elementary theory of L-functions and Eisenstein series. Cambridge Univ. Press, 1993. | MR 1216135 | Zbl 0942.11024

[GaHa] Paul B. Garrett, Michael Harris, Special values of triple product L-functions. Am. J. Math. 115 (1993), 161-240. | MR 1209238 | Zbl 0776.11027

[Ka76] N.M. Katz, p-adic interpolation of real analytic Eisenstein series. Ann. of Math. 104 (1976), 459-571 | MR 506271 | Zbl 0354.14007

[Ka78] Katz, N.M., p-adic L-functions for CM-fields. Invent. Math. 48 (1978), 199-297. | MR 513095 | Zbl 0417.12003

[KI] Klingen H., Über die Werte Dedekindscher Zetafunktionen. Math. Ann. 145 (1962), 265-272 | MR 133304 | Zbl 0101.03002

[LBP] Yann-Henri Le Bras, A.A. Panchishikin, Sur les produits triples A-adiques. Communications in Algebra 29 no. 9 (2001), 3727-3740. | MR 1857008 | Zbl 1012.11042

[Ma73] Yu.I. Manin, Periods of cusp forms and p-adic Hecke series. Mat. Sbornik 92 (1973), 378-401. | MR 345909 | Zbl 0293.14007

[Man-Pa] Yu.I. Manin, A.A. Panchishkin, Convolutions of Hecke series and their values at integral points. Mat. Sbornik 104 (1977), 617-651. | MR 476645 | Zbl 0392.10028

[Miy] Toshitsune Miyake, Modular forms. Transl. from the Japanese by Yoshitaka Maeda. Berlin etc. Springer-Verlag. viii, 1989. | MR 1021004 | Zbl 05012868

[MTT] B. Mazur,J. Tate, J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84 (1986), 1-48. | MR 830037 | Zbl 0699.14028

[PLNM] A.A. Panchishkin, Non-Archimedean L-functions of Siegel and Hilbert modular forms. Lecture Notes in Math. 1471, Springer-Verlag, 2nd augmented edition 2003.

[PTr] A.A. Panchishkin, Produits triples des formes modulaires et leur interpolation p-adique par la méthode d'Amice-Vélu. Manuscript de l'exposé au Colloque à la mémoire d'Yvette Amice, (mars 1994), 1-27.

[PIsr] A.A. Panchishkin, On the Siegel-Eisenstein measure. Israel Journal of Mathematics 120 (2000), 467-509. | MR 1809631 | Zbl 0977.11021

[PaTV] A.A. Panchishkin, Two variable p-adic L functions attached to eigenfamilies of positive slope. Inventiones Math. 154 no. 3 (2003), 551 -615. | MR 2018785 | Zbl 1065.11025

[PaB1] A.A. Panchishkin, Arithmetical differential operators on nearly holomorphic Siegel modular forms. Preprint MPI 41 (2002), 1-52.

[PaB1] A.A. Panchishkin, Admissible measures for standard L-functions and nearly holomorphic Siegel modular forms. Preprint MPI 42 (2002), 1-65.

[PIAS] A.A. Panchishkin, On p-adic integration in spaces of modular forms and its applications. J. Math. Sci. New York 115 no.3 (2003), 2357-2377. | MR 1981306 | Zbl 1040.11034

[PNM] A.A. Panchishkin, A new method of constructing p-adic L-functions associated with modular forms. Moscow Mathematical Journal 2 (2002), 1-16. | Zbl 1011.11026

[Ra52] R.A. Rankin, The scalar product of modular forms, Proc. London math. Soc. 3 (1952), 198-217. | MR 49231 | Zbl 0049.33904

[Se73] Jean-Pierre Serre, Formes modulaires et fonctions zêta p-adiques. Lecture Notes in Math. 350 (1973), 191-286. | MR 404145 | Zbl 0277.12014

[Shi71] Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions. Princeton Univ. Press, 1971. | MR 314766 | Zbl 0872.11023

[Shi77] Goro Shimura, On the periods of modular forms. Math. Annalen 229 (1977), 211-221. | MR 463119 | Zbl 0363.10019

[Vi76] M.M. Višik, Non-archimedean measures connected with Dirichlet series. Math. USSR Sb. 28 (1976), 216-228. | Zbl 0369.14010