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The distribution of the values of a rational
function modulo a big prime

par ALEXANDRU ZAHARESCU

RESUME. Etant donnés un grand nombre premier p et une fonc-
tion rationelle 7(X) définie sur F, = Z/pZ, on évalue la grandeur
de 'ensemble {z € F, : #(z) > 7#(z + 1)}, ou 7(x) et #(z + 1) sont
les plus petits représentants de r(z) et r(z + 1) dans Z modulo
PL.

ABSTRACT. Given a large prime number p and a rational function
r(X) defined over F, = Z/pZ, we investigate the size of the set
{z € Fy : #(x) > 7(z + 1)}, where 7(z) and 7(z + 1) denote the
least positive representatives of r(z) and r(z+1) in Z modulo pZ.

1. Introduction

Several problems on the distribution of points satisfying various con-
gruence constraints have been investigated recently. Given a large prime
number p, for any a € {1,2,...,p—1} let @ € {1,2,...,p— 1} be such that
a@ =1 (mod p). A question raised by D.H. Lehmer (see Guy [4, Problem
F12]) asks to say something nontrivial about the number, call it N(p), of
those a for which a and @ are of opposite parity. The problem was studied
by Wenpeng Zhang in [8], [9] and [10] who proved that

(1) N@) = £+ 0 (p"10gp)

and then generalized (1) to the case when p is replaced by any odd number
q. In [2] it is obtained a generalization of (1), in which the pair (a,a) is
replaced by a point lying on a more general irreducible curve defined mod
p. Zhang also studied the problem of the distribution of distances |a — @],
where a,a run over the set of integers in {1,...,n — 1} which are relatively
prime to n. He proved in [11] that for any integer n > 2 and any 0 < § < 1
one has
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I{a.: 1<a<n-1, (a,n)=1, la—a| < Jn}!

2
(2) =8(2 - 8)p(n) +0 (n%d2(n) 10g3 n) )

where ¢(n) is the Euler function and d(n) denotes the number of divisors of
n. In [12] Zhiyong Zheng investigated the same problem, with (a, @) replaced
by a pair (z,y) satisfying a more general congruence. Precisely, let p be a
prime number and let f(z,y) be a polynomial with integer coefficients of
total degree d > 2, absolutely irreducible modulo p. Then it is proved in
[12] that for any 0 < § < 1 one has:

{9 €2?:0<a,y<p, f(5,4)=0 (modp),|z—y| < 5p}]
=6(2-90)p+ 04 (p% logzp) .

A generalization of this problem, where the pair (z,y) is replaced by a
point lying on an irreducible curve in a higher dimensional affine space over
the field I, = Z/pZ, has been obtained in [3].

There are different ways to measure the randomness of the distribu-
tion of a given set. B. Z. Moroz showed in [5] that the squares (or the
l—th powers, if | divides p — 1) are randomly distributed among the values
{ip(£(0)),...,ip(f(p — 1))} of a fixed irreducible polynomial f(X) in Z[X]
modulo a prime p, as p — oo (here i, stands for the reduction modulo p).

In the present paper we study what happens with the order of residue
classes mod p when they are transformed through a rational function r(X) €
Fp (X). For any y € F, denote by j(y) the least positive representative of y
in Z modulo pZ. To any rational function r(X) € F,(X) we associate the
map 7 : F, = {0,1,...,p — 1} given by #(z) = j(r(z)) if z € F, is not a
pole of 7(X), and 7(z) = 0 if z is a pole of 7(X). As the degree of r(X)
will be assumed to be small in terms of p in what follows, the contribu-
tion of the poles of r(X) in our asymptotic results will be negligible. If
we count those x € F, for which #(z + 1) < 7(z), respectively those z for
which 7(z + 1) > 7(z), there should be no bias towards any one of these
inequalities. In other words one would expect that for about half of the
elements z € Fp, #(z + 1) is larger than 7(z) and for about half of the
elements z € Fy, 7(z + 1) is smaller than 7(z).

In order to handle the above problem, we fix nonzero positive integers a, b
and study the distribution of the set {b7(z+1)—a#(z) : z € F,}. For any real
number ¢ consider the set M(a,b,p,r,t) = {z € Fp, : bf(z+1)—a7(z) < tp}
and denote by D(a,b,p,r,t) the number of elements of M(a, b, p,r,t). Our
aim is to provide an asymptotic formula for D(a,b,p,r,t).
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We now introduce a function G(t, a,b) which will play an important role
in the estimation of D(a,b,p,r,t).

(0, if t<-a
o) if —a<t<W

G(ta,b) =4 (1-G30) £ L BHl ¢ w<t<z
1- &0 if Z<t<b
|1, if b<t

where W = min{0,b — a} and Z = max{0,b — a}. We will prove the
following

Theorem 1.1. For any positive integers a,b,d, any prime number p, any
real number t and any rational function r(X) = ﬁ% which is not a linear

polynomial, with f,g € Fy[X], deg f,degg < d, one has
3) D(a,b,p,7,1) = pG(t,0,5) + Oupa (1 10g?p) .

As a consequence of Theorem 1.1 we show that the inequality 7(z) >
7(z + 1) holds indeed for about half of the values of z in F,.

Corollary 1.2. Let p be a prime number, d a positive integer and let
r(X) = ﬁ% be a rational function which is not a linear polynomial, with
f,9 € Fp[X] and deg f,degg < d. Then one has

#{z el :7(z) >Fz+1)} = §+ Oq4 (p1/2 logzp) .

As another application of Theorem 1.1 we obtain an asymptotic result
for all the even moments of the distance between 7(z + 1) and 7(z).

Corollary 1.3. Let k be a positive integer and let p,d,r(X) be as in the
statement of Corollary 1. Then we have

M(p,r,2k) =) _ (F(z +1) — #(z))*
z€F,

2
P k41

~ (k+ D)2k +1)
In particular, for £ = 1 one has

+Oga (p2k+1/2 log? p) )

3
M(p,r,2) = % + 04(p% l0gp) .

This says that in quadratic average |(z + 1) — 7(z)| is ~ -\%.
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2. Proof of Theorem 1.1

We will need the following lemma, which is a consequence of the Riemann
Hypothesis for curves defined over a finite field (see [7], [6], [1]).

Lemma 2.1. Let p be a prime number and F, the field with p elements.
Let 9 be a nontrivial character of the additive group of F, and let R(X) be
a nonconstant rational function. Then

> ¥(R(a)) = O (vP),
aclF,

where the poles of R(X) are excluded from the summation, and the im-
plicit O—constant depends at most on the degrees of the numerator and
denominator of F(X).

Let now p be a prime number, let a, b, d be positive integers less than p, let
t be a real number and let r(X) = ﬁ%, r(X) not a linear polynomial, with
f(X)’g(X) € FP[X]? degf(X),degg(X) S d. For any y,z € {Oa 1’ P —
1} we set
1, if bz—ay<tp

4 H ) =Hta,a,b= .
(@ (1:2) = Ht,, 70,1 {O, s

Then we may write D(a,b,p,r,t) in the form

D(a,b,p,7t) = Y H(7(z),7(z + 1))
z€Fy

= Y H@2#{zeF:#(z)=yf(z+1) =2z}
0<y,2<p-1
Next, we write D(a,b,p,r,t) in terms of exponential sums mod p. Denote
as usual e, (w) = e » for any w. Using the equalities

. , if 7(z) =
Y eplmiy - (a) = {f; @y

0<m<p-1 ), €lse

and
- , if Flz+1l)==2
Y eplnls - ila+1)) = {ﬁ,’ £ T
0<n<p-1 ’
we find that
1
(5) D(a" b,pa L) t) = F Z H(y7 Z)
0<y,2<p-1

XY, Y, amy-i@) Y eln(z-f(z+1)

z€F, 0<m<p-1 0<n<p-1
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=% Z | Z H(y, z)ep(my + nz) Z ep(—m#(z) — ni(z + 1))

0<m,n<p—-10<y,z<p—1 z€F,

=§ Z E(m, n)S(—ma -n, r,p),

0<m,n<p-1
where

(6) H(m,n) = Z H(y,2)ep(my + nz)
0<y,2<p-1

and

(7 S(-m,—n,r,p) = Z ep(—mi(z) — nf(z + 1)).
z€F,

Note that for m = n = 0 one has
(8) S(O’ 0,7, P) =p-

Next, we claim that if (m,n) # (0,0) then the rational function h(X) =
mr(X) + nr(X + 1) € F,(X) is nonconstant. Indeed, if n = 0 then m # 0
and h(X) = mr(X) is nonconstant by the hypotheses from the statement

of the theorem. The same conclusion holds if m = 0 and n # 0. Let now
m # 0, n # 0 and assume that

(9) mr(X)+nr(X+1)=c¢c

for some ¢ € F,. Suppose first that r(X) is not a polynomial and choose
a root & € Fy of the denominator of r(X), where F, denotes the algebraic
closure of F,,. Since a is a pole of 7(X), from (9) it follows that a is also a
pole of (X + 1), that is @+ 1 is a pole of 7(X). By repeating the above
reasoning with a replaced by oo+ 1 we see that a+2, a+3,...,a+p—1
are poles of 7(X). This forces deg g(X) to be > p, so d > p, in which case
(3) becomes trivial. Let us suppose now that r(X) is a polynomial, say

rX)=aX' 41 X1+ + a1 X +ag

with ag,...,a; € Fp, a; # 0. Then by the hypotheses of Theorem 1.1 it
follows that [ > 2. Looking at the coefficient of X' in (9) we deduce that
m +n = 0 in F,. But then, the coefficient of X'~! on the left side of (9)
equals Ina;, which is nonzero in Fp, contradicting (9). This proves our claim
that h(X) is nonconstant in F,(X). By Lemma 2.1 it follows that

(10) |S(=m, —n,7,p)| = Oua(v/P)

for any (m,n) # (0,0).

Next, we proceed to evaluate the coefficients H(m,n). We calculate ex-
plicitly H(0,0) and provide upper bounds for |H(m, n)| for (m,n) # (0,0).
There are four cases.
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I. m =0, n # 0. We have
HO,n)= Y. H(y2)ep(nz).

0<y,2<p-1

By the definition of H(y, z) it follows that for each y € {0,1,...,p— 1} we
have a sum of ey(nz) with z running over a subinterval of {0,1,...,p—1},
that is a sum of a geometric progression with ratio e;(n). The absolute

value of such a sum is < ]——2—[ and consequently
ep(ﬂ -1

(11) |E(0,n)| < o =1~ n,,T < 2“%”

where ||| denotes the distance to the nearest integer.
II. m # 0, n = 0. Similarly, as in case I, we have

H(m,0)| < =2
(12) |H(m )|<2

m
p

III. m # 0, n # 0. We need the following lemma.

Lemma 2.2. Let h,k # 0 (mod p), L, T and u > 0 be integers. Let
Z,,_o ZHHT ep(hy)ep(kz). Then one has

2=0

-0 e s iy i)

Proof. One has

L uy+T
S= ephy) Y eplk2)
y—O z=0

"Zep(h —ep(k(uy+T +1))

y=0 1 —ep(k)
1 & ep(K(T +1)) &
" 1—ey(k) yg)ep(hy) - -LITJE)-_ ygoep((h + ku)y).
Thus
1 L
|S| ST |1 (k)' Z (hy) I Zep((h + ku y)
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Note that

1 11 L _ofL
|1 - ep(k)' 1 - 621;:k Ie_% - ez;— I2sm ’;" ”%“

Also,
Il—ep(h(L+1))| =0 ._1_ .
o\

Lastly, if h + ku is not a multiple of p, then

L
E ep(hy)| =

y=0

L
1 —ep((h+ ku)(L+1))| 1
2 ootk =k~ | Tm] )
y=0 P
We also have the bound
L
> ep((h+ku)y)| < L+1,
y=0

which is valid for any h,k and u. Putting the above bounds together,
Lemma 2.2 follows. 5
We now return to the estimation of H(m,n). Writing

H(m,n) = Z ep(my + nz)

0<y,z<p-1
bz—ay<tp

as a sum of b sums according to the residue of y modulo b, one arrives at
sums as in Lemma 2.2, with A = mb, k = n, u = a. It follows that

} H ll""’ll)
IV. m,n = 0. By definition, we have
H0,00= Y Hy>2).
0<y,z<p-1

Let D be the set of real points from the square [0, p) x [0, p) which lie below
the line bz — ay = tp. Then H(0,0) equals the number of integer points
(y,2) from D. Therefore

H(0,0) = Area(D) + O(length(0D)).

An easy computation shows that Area(D) equals p?>G(t,a,b) with G(¢, a,b)
defined as in the Introduction, while the length of the boundary 9D is < 4p.
Hence

(13) |H(m,n)| = Ogp (” “ min {p, ”

H(0,0) = p*G(t,a,b) + O(p).



870 Alexandru ZAHARESCU

By (5) we know that

’D(a, b,p,r,t) — —l—fI(0,0)S’(O, 0,m,p)| < D1+ D2+ Ds,

P
where
1 2
= p2 Z |H(m 0)| IS( m,0, r,p)|
m=1
=
p2 ZlH(O n)| |S(0,—n,r,p )I ,
n=1
1 -1 p-1 .
= ? Z Z IH(man)l IS(—m'I —-n,r,p)l .
m=1n=1
One has
SH©,050,0,1,5) = T = Gt 0,8) + 0.
By (11) and (10) we have
-1
1
Dy = 04 ,,zZ = Oq4(v/plogp) -
=1 %
Similarly one has
= 0q4(y/plogp).

In order to estimate D3 we first use (10) and (13) to obtain

p—1 p—1 1 1
(14) D3 = abd(p3/2 ZZ Inlnﬁn{P,I—IE}

m=1n=1 P P
L "‘1 ”‘1 11 )
2 _ _
7 a5 T2
The first double sum in (14) is
£ )
n mbtan
m=1n=1 ||y P
p— p—l p—1 1
R =5
b+a.n,-0 (mod P) mb+an$0 (mod p)
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<PZP+Z” ” ” “<p (1 +logp) +4p°(1 +logp)?,
m'=1 ||

n=1

while the second double sum is

”mb" Z %;:p 1+logp)

Hence D3 = O, 4 (\/1_) log? p). Putting all these together, Theorem 1.1
follows.

p—1p-1

ZZ

m=1n=1

n
p

3. Proof of the Corollaries
For the proof of the first Corollary, let us notice that
#{z €F, :7(z) >F(z+1)} = D(1,1,p,r,0).
Here W = Z =0 and so

_ (¢ + a)? 1
G(0,1,1) = 2ab — 3
Thus .
#{z€F, :7(z) >F(z+1)} = g Oq(p? log? p)
which proves Corollary 1.2.
In order to prove Corollary 1.3 note that
M(p,r,2k) = Y _ (F(z +1) - #(2))*
z€lF,
= Y m*#{zeF,:#(z+1)-(z) =m}.
—p<m<p
This equals :
m+1 m
> 2"(D( —) - D(-—)) =D(1)(p-1)*
—p<m<p

+ Y. D(— ((m-1)2'°-m2'°)
—p<m<p

where for any ¢ we denote D(¢t) = D(1,1,p,r,t). From Theorem 1.1 it
follows that

M(p,r,2) = p*G(LL Y +p Y G(T,1,1)(m - 1) - m*)
—p<m<p p

+O0k 4 (pzk"'% log? p) + 04 (p1/2 log?p Z |(m —1)% _ 2 ) .

—p<m<p



872 Alexandru ZAHARESCU

Since (m — 1)%* — m? = —2km?~1 + O, (p?*~?) and 0 < G(%,1,1) < 1
for any m, we derive

M(p,r,2k) = p™**1G(1,1,1) —=2kp ) m*~ 1G(— 1,1)

—-p<m<p
+Org (p'”‘*f log? p)-
From the definition of G' we see that
0, if m<-p
m\2
m E—ZL)-, if - p<m<0
G(‘—’ 1’ 1) = (1_m)2
p 1-—2—, if 0<m<p
1, if p<m.

Using the fact that for any positive integer r one has 3, ..,m" =

2 Or(p") ifrisevenand }°_, ., ,m" = 0if r is odd, the statement

r+1
of Corollary 1.3 follows after a straightforward computation.
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