Nous étudions géométriquement les ensembles de points de
We investigate in a geometrical way the point sets of
@article{JTNB_2004__16_1_125_0, author = {Gazeau, Jean-Pierre and Verger-Gaugry, Jean-Louis}, title = {Geometric study of the beta-integers for a {Perron} number and mathematical quasicrystals}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {125--149}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {1}, year = {2004}, doi = {10.5802/jtnb.437}, zbl = {1075.11007}, mrnumber = {2145576}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.437/} }
TY - JOUR AU - Gazeau, Jean-Pierre AU - Verger-Gaugry, Jean-Louis TI - Geometric study of the beta-integers for a Perron number and mathematical quasicrystals JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 125 EP - 149 VL - 16 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.437/ DO - 10.5802/jtnb.437 LA - en ID - JTNB_2004__16_1_125_0 ER -
%0 Journal Article %A Gazeau, Jean-Pierre %A Verger-Gaugry, Jean-Louis %T Geometric study of the beta-integers for a Perron number and mathematical quasicrystals %J Journal de théorie des nombres de Bordeaux %D 2004 %P 125-149 %V 16 %N 1 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.437/ %R 10.5802/jtnb.437 %G en %F JTNB_2004__16_1_125_0
Gazeau, Jean-Pierre; Verger-Gaugry, Jean-Louis. Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 125-149. doi : 10.5802/jtnb.437. https://www.numdam.org/articles/10.5802/jtnb.437/
[Ak] S. Akiyama, Cubic Pisot units with finite
[Ak1] S. Akiyama, Pisot numbers and greedy algorithm. Number Theory, (Eger, 1996), de Gruyter, Berlin, (1998), 9–21. | MR | Zbl
[ABEI] P. Arnoux, V. Berthé, H. Ei and S. Ito, Tilings, quasicrystals, discrete planes, generalized substitutions and multidimensional continued fractions. Disc. Math. and Theor. Comp. Sci. Proc. AA (DM-CCG), (2001), 59–78. | MR | Zbl
[AI] P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. 8 (2001), 181–207. | MR | Zbl
[Be] A. Bertrand, Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sc. Paris, Série A, t. 285 (1977), 419–421. | MR | Zbl
[Be1] A. Bertrand - Mathis, Comment écrire les nombres entiers dans une base qui n’est pas entière. Acta Math. Hung., 54, (3-4) (1989), 237–241. | MR | Zbl
[Be2] A. Bertrand - Mathis, Développement en base
[Be3] A. Bertrand - Mathis, Nombres de Perron et questions de rationnalité. Séminaire d’Analyse, Université de Clermont II, Année 1988/89, Exposé 08; A. Bertrand - Mathis, Nombres de Perron et problèmes de rationnalité. Astérisque, 198-199-200 (1991), 67–76. | Numdam | Zbl
[Be4] A. Bertrand - Mathis, Questions diverses relatives aux systèmes codés: applications au
[Bl] F. Blanchard,
[Bu] Č. Burdík, Ch. Frougny, J.-P. Gazeau and R. Krejcar, Beta-integers as natural counting systems for quasicrystals. J. Phys. A: Math. Gen. 31 (1998), 6449–6472. | MR | Zbl
[Fro] C. Frougny, Number representation and finite automata. London Math. Soc. Lecture Note Ser. 279 (2000), 207–228. | MR | Zbl
[Fro1] Ch. Frougny and B. Solomyak, Finite beta-expansions. Ergod. Theor. Dynam. Syst. 12 (1992), 713–723. | MR | Zbl
[Gaz] J. P. Gazeau, Pisot-Cyclotomic Integers for Quasicrystals. The Mathematics of Long-Range Aperiodic Order, Ed. By R.V. Moody, Kluwer Academic Publishers, (1997), 175–198. | MR | Zbl
[HS] M. W. Hirsch and S. Smale, Differential Equations. Dynamical Systems and Linear Algebra, Academic Press, New York, (1974). | MR | Zbl
[IK] S. Ito and M. Kimura, On the Rauzy fractal. Japan J. Indust. Appl. Math. 8 (1991), 461–486. | MR | Zbl
[IS] S. Ito and Y. Sano, On periodic
[La] J. Lagarias, Geometric Models for Quasicrystals I. Delone Sets of Finite Type. Discrete Comput. Geom. 21 no 2 (1999), 161–191. | MR | Zbl
[La1] J.C. Lagarias, Geometrical models for quasicrystals. II. Local rules under isometry. Disc. and Comp. Geom., 21 no 3 (1999), 345–372. | MR | Zbl
[La2] J.C. Lagarias, Mathematical Quasicrystals and the problem of diffraction. Directions in Mathematical Physics, CRM Monograph Series, Vol 13, Ed. M. Baake and R.V. Moody, (2000), 61–94. | MR | Zbl
[Li] D. Lind, The entropies of topological Markov shifts and a related class of algebraic integers. Ergod. Th. & Dynam. Sys. 4 (1984), 283–300. | MR | Zbl
[Me] A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy. J. Théor. Nombres Bordeaux, 10 (1998), 135–162. | EuDML | Numdam | MR | Zbl
[Me1] A. Messaoudi, Frontière du fractal de Rauzy et système de numérotation complexe Acta Arith. 95 (2000), 195–224. | EuDML | MR | Zbl
[Mey] Y. Meyer, Algebraic Numbers and Harmonic Analysis. North-Holland (1972). | MR | Zbl
[Mi] H. Minc, Nonnegative matrices. John Wiley and Sons, New York (1988). | MR | Zbl
[Mo] R.V. Moody, Meyer sets and their duals The Mathematics of Long-Range Aperiodic Order, Ed. By R.V. Moody, Kluwer Academic Publishers, (1997), 403–441. | MR | Zbl
[MVG] G. Muraz and J.-L. Verger-Gaugry, On lower bounds of the density of packings of equal spheres of
[Pa] W. Parry, On the
[PF] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics. Lect. Notes Math. 1794, Springer-Verlag, (2003). | MR | Zbl
[Ra] G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France, 110 (1982), 147–178. | EuDML | Numdam | MR | Zbl
[Re] A. Renyi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8 (1957), 477–493. | MR | Zbl
[Ru] D. Ruelle, Statistical Mechanics; Rigorous results. Benjamin, New York, (1969). | MR | Zbl
[Sc] J. Schmeling, Symbolic dynamics for
[Sch] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 269–278. | MR | Zbl
[So] B. Solomyak, Dynamics of Self-Similar Tilings. Ergod. Th. & Dynam. Sys. 17 (1997), 695–738. | MR | Zbl
[Th] W. Thurston Groups, tilings and finite state automata. Preprint (1989).
Cité par Sources :