Cet article donne une classification des réseaux fortement modulaires dont la longueur de l’ombre prend les deux plus grandes valeurs possibles.
This article classifies the strongly modular lattices with longest and second longest possible shadow.
@article{JTNB_2004__16_1_187_0, author = {Nebe, Gabriele}, title = {Strongly modular lattices with long shadow}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {187--196}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {1}, year = {2004}, doi = {10.5802/jtnb.441}, zbl = {1078.11047}, mrnumber = {2145580}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.441/} }
TY - JOUR AU - Nebe, Gabriele TI - Strongly modular lattices with long shadow JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 187 EP - 196 VL - 16 IS - 1 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.441/ DO - 10.5802/jtnb.441 LA - en ID - JTNB_2004__16_1_187_0 ER -
Nebe, Gabriele. Strongly modular lattices with long shadow. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 187-196. doi : 10.5802/jtnb.441. http://archive.numdam.org/articles/10.5802/jtnb.441/
[1] N.D. Elkies, A characterization of the lattice. Math. Res. Lett. 2 no. 3 (1995), 321–326. | MR | Zbl
[2] N.D. Elkies, Lattices and codes with long shadows. Math. Res. Lett. 2 no. 5 (1995), 643–651. | MR | Zbl
[3] M. Gaulter, Lattices without short characteristic vectors. Math. Res. Lett. 5 no. 3 (1998), 353–362. | MR | Zbl
[4] C. L. Mallows, A. M. Odlysko, N. J. A. Sloane, Upper bounds for modular forms, lattices and codes. J. Alg. 36 (1975), 68–76. | MR | Zbl
[5] T. Miyake, Modular Forms. Springer (1989). | MR | Zbl
[6] G. Nebe, N.J.A. Sloane, A database of lattices. http://www.research.att.com/~njas/lattices
[7] H.-G. Quebbemann, Modular lattices in euclidean spaces. J. Number Th. 54 (1995), 190–202. | MR | Zbl
[8] H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices. L’Ens. Math. 43 (1997), 55–65. | MR | Zbl
[9] E.M. Rains, N.J.A. Sloane, The shadow theory of modular and unimodular lattices. J. Number Th. 73 (1998), 359–389. | MR | Zbl
Cité par Sources :