Soit un nombre complexe, un entier positif et , où désigne l’ensemble des polynômes à coefficients entiers de valeur absolue . Nous déterminons dans cette note le maximum des quantités quand décrit l’intervalle . Nous montrons aussi que si est un nombre non-réel de module , alors est un nombre de Pisot complexe si et seulement si pour tout .
Let be a complex number, be a positive rational integer and , where denotes the set of polynomials with rational integer coefficients of absolute value . We determine in this note the maximum of the quantities when runs through the interval . We also show that if is a non-real number of modulus , then is a complex Pisot number if and only if for all .
@article{JTNB_2004__16_1_239_0, author = {Za{\"\i}mi, Toufik}, title = {On an approximation property of {Pisot} numbers {II}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {239--249}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {1}, year = {2004}, doi = {10.5802/jtnb.446}, zbl = {02184644}, mrnumber = {2145586}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.446/} }
TY - JOUR AU - Zaïmi, Toufik TI - On an approximation property of Pisot numbers II JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 239 EP - 249 VL - 16 IS - 1 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.446/ DO - 10.5802/jtnb.446 LA - en ID - JTNB_2004__16_1_239_0 ER -
Zaïmi, Toufik. On an approximation property of Pisot numbers II. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 239-249. doi : 10.5802/jtnb.446. http://archive.numdam.org/articles/10.5802/jtnb.446/
[1] K. Alshalan and T. Zaimi, Some computations on the spectra of Pisot numbers. Submitted.
[2] D. Berend and C. Frougny, Computability by finite automata and Pisot Bases. Math. Systems Theory 27 (1994), 275–282. | MR | Zbl
[3] P. Borwein and K. G. Hare, Some computations on the spectra of Pisot and Salem numbers. Math. Comp. 71 No. 238 (2002), 767–780. | MR | Zbl
[4] D. W. Boyd, Salem numbers of degree four have periodic expansions. Number Theory (eds J.-H. de Coninck and C. Levesque, Walter de Gruyter, Berlin) 1989, 57–64. | MR | Zbl
[5] Y. Bugeaud, On a property of Pisot numbers and related questions. Acta Math. Hungar. 73 (1996), 33–39. | MR | Zbl
[6] P. Erdös, I. Joó and V. Komornik, Characterization of the unique expansions and related problems. Bull. Soc. Math. France 118 (1990), 377–390. | Numdam | MR | Zbl
[7] P. Erdös, I. Joó and V. Komornik, On the sequence of numbers of the form {0,1}. Acta Arith. 83 (1998), 201–210. | MR | Zbl
[8] P. Erdös, I. Joó and F. J. Schnitzer, On Pisot numbers. Ann. Univ. Sci. Budapest Eotvos Sect. Math. 39 (1996), 95–99. | MR | Zbl
[9] P. Erdös and V. Komornik, Developments in non integer bases. Acta Math. Hungar. 79 (1998), 57–83. | MR | Zbl
[10] C. Frougny, Representations of numbers and finite automata. Math. Systems Theory 25 (1992), 37–60. | MR | Zbl
[11] V. Komornik, P. Loreti and M. Pedicini, An approximation property of Pisot numbers. J. Number Theory 80 (2000), 218–237. | MR | Zbl
[12] W. Parry, On the expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416. | MR | Zbl
[13] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Hungar. 8 (1957), 477–493. | MR | Zbl
[14] B. Solomyak, Conjugates of beta-numbers and the zero-free domain for a class of analytic functions. Proc. London Math. Soc. 68 (1994), 477–498. | MR | Zbl
[15] T. Zaïmi, On an approximation property of Pisot numbers. Acta Math. Hungar. 96 (4) (2002), 309–325. | MR | Zbl
Cité par Sources :