Critical and ramification points of the modular parametrization of an elliptic curve
Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 109-124.

Soit E une courbe elliptique définie sur de conducteur N et soit ϕ son revêtement modulaire :

ϕ:X0(N)E().

Dans cet article, nous nous intéressons aux points critiques et aux points de ramification de ϕ. En particulier, nous expliquons comment donner une étude plus ou moins expérimentale de ces points.

Let E be an elliptic curve defined over with conductor N and denote by ϕ the modular parametrization:

ϕ:X0(N)E().

In this paper, we are concerned with the critical and ramification points of ϕ. In particular, we explain how we can obtain a more or less experimental study of these points.

@article{JTNB_2005__17_1_109_0,
     author = {Delaunay, Christophe},
     title = {Critical and ramification points of the modular parametrization of an elliptic curve},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {109--124},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.480},
     mrnumber = {2152214},
     zbl = {1082.11033},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.480/}
}
Delaunay, Christophe. Critical and ramification points of the modular parametrization of an elliptic curve. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 109-124. doi : 10.5802/jtnb.480. http://archive.numdam.org/articles/10.5802/jtnb.480/

[1] A.O.L. Atkin, J. Lehner, Hecke operators on Γ 0 (N). Math. Ann. 185 (1970), 134–160. | Zbl 0177.34901

[2] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, pari-gp, available at http://www.math.u-psud.fr/~belabas/pari/

[3] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over : wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic). | MR 1839918 | Zbl 0982.11033

[4] B. Birch, Heegner points of elliptic curves. Symp. Math. Inst. Alta. Math. 15 (1975), 441–445. | MR 384805 | Zbl 0317.14015

[5] H. Cohen, A course in computational algebraic number theory. Graduate Texts in Math. 138, Springer-Verlag, New-York, 4-th corrected printing (2000). | MR 1228206 | Zbl 0786.11071

[6] J. Cremona, Algorithms for modular elliptic curves. Cambridge University Press, (1997) second edition. | MR 1628193 | Zbl 0758.14042

[7] J. Cremona, Elliptic curve data for conductors up to 25000. Available at http://www.maths.nott.ac.uk/personal/jec/ftp/data/INDEX.html

[8] C. Delaunay, Computing modular degrees using L-functions. Journ. theo. nomb. Bord. 15 (3) (2003), 673–682. | Numdam | MR 2142230 | Zbl 1070.11021

[9] B. Gross, Heegner points on X 0 (N). Modular Forms, ed. R. A. Ramkin, (1984), 87–105. | MR 803364 | Zbl 0559.14011

[10] B. Gross, D. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84 (1986), 225–320. | MR 833192 | Zbl 0608.14019

[11] B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves. Invent. Math. 25 (1974), 1–61. | MR 354674 | Zbl 0281.14016

[12] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Math. Soc of Japan 11, Princeton university Press (1971). | MR 1291394 | Zbl 0221.10029

[13] N. Skoruppa, D. Zagier, Jacobi forms and a certain space of modular forms. Inv. Math. 98 (1988), 113–146. | MR 958592 | Zbl 0651.10020

[14] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553–572. | MR 1333036 | Zbl 0823.11030

[15] M. Watkins, Computing the modular degree. Exp. Math. 11 (4) (2002), 487–502. | MR 1969641 | Zbl 05032284

[16] A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141 (1995), no.3, 443–551. | MR 1333035 | Zbl 0823.11029

[17] D. Zagier, Modular parametrizations of elliptic curves. Canad. Math. Bull. 28 (3) (1985), 372–384. | MR 790959 | Zbl 0579.14027