Special values of symmetric power L-functions and Hecke eigenvalues
Journal de Théorie des Nombres de Bordeaux, Tome 19 (2007) no. 3, pp. 703-753.

On calcule les moments des fonctions L de puissances symétriques de formes modulaires au bord de la bande critique en les tordant par les valeurs centrales des fonctions L de formes modulaires. Dans le cas des puissances paires, on montre qu’il est équivalent de tordre par la valeur au bord des fonctions L de carrés symétriques. On en déduit des informations sur la taille des valeurs au bord de la bande critique de fonctions L de puissances symétriques dans certaines sous-familles. Dans une deuxième partie, on étudie la répartition des petites et grandes valeurs propres de Hecke. On en déduit des informations sur des conditions d’extrémalité simultanées des valeurs de fonctions L de puissances symétriques au bord de la bande critique.

We compute the moments of L-functions of symmetric powers of modular forms at the edge of the critical strip, twisted by the central value of the L-functions of modular forms. We show that, in the case of even powers, it is equivalent to twist by the value at the edge of the critical strip of the symmetric square L-functions. We deduce information on the size of symmetric power L-functions at the edge of the critical strip in subfamilies. In a second part, we study the distribution of small and large Hecke eigenvalues. We deduce information on the simultaneous extremality conditions on the values of L-functions of symmetric powers of modular forms at the edge of the critical strip.

@article{JTNB_2007__19_3_703_0,
     author = {Royer, Emmanuel and Wu, Jie},
     title = {Special values of symmetric power $L$-functions and Hecke eigenvalues},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {703--753},
     publisher = {Universit\'e Bordeaux 1},
     volume = {19},
     number = {3},
     year = {2007},
     doi = {10.5802/jtnb.609},
     mrnumber = {2388795},
     zbl = {1196.11071},
     language = {en},
     url = {archive.numdam.org/item/JTNB_2007__19_3_703_0/}
}
Royer, Emmanuel; Wu, Jie. Special values of symmetric power $L$-functions and Hecke eigenvalues. Journal de Théorie des Nombres de Bordeaux, Tome 19 (2007) no. 3, pp. 703-753. doi : 10.5802/jtnb.609. http://archive.numdam.org/item/JTNB_2007__19_3_703_0/

[CFKRS03] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, Autocorrelation of random matrix polynomials. Comm. Math. Phys. 237 (2003), no. 3, 365–395. | MR 1993332 | Zbl 1090.11055

[CFKRS05] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, Integral moments of L-functions. Proc. London Math. Soc. (3) 91 (2005), no. 1, 33–104. | MR 2149530 | Zbl 1075.11058

[CM04] J. Cogdell and P. Michel, On the complex moments of symmetric power L-functions at s=1. Int. Math. Res. Not. (2004), no. 31, 1561–1617. | MR 2035301 | Zbl 1093.11032

[Eic54] M. Eichler, Quaternäre quadratische Formen und die Riemannsche Vermutung. Archiv der Mathematik V (1954), 355–366. | MR 63406 | Zbl 0059.03804

[Ell73] P. D. T. A. Elliott, On the distribution of the values of quadratic L-series in the half-plane σ>1 2. Invent. Math. 21 (1973), 319–338. | MR 352019 | Zbl 0265.10022

[FH95] S. Friedberg and J. Hoffstein, Nonvanishing theorems for automorphic L-functions on GL (2). Ann. of Math. (2) 142 (1995), no. 2, 385–423. | MR 1343325 | Zbl 0847.11026

[FOP04] S. Frechette, K. Ono, and M. Papanikolas, Combinatorics of traces of Hecke operators. Proc. Natl. Acad. Sci. USA 101 (2004), no. 49, 17016–17020 (electronic). | MR 2114776 | Zbl 1064.11038

[GHL94] D. Goldfeld, J. Hoffstein, and D. Lieman, An effective zero-free region. Ann. of Math. (2) 140 (1994), no. 1, 177–181, Appendix of [HL94]. | MR 1289494 | Zbl 0814.11032

[GJ78] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL (2) and GL (3). Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. | Numdam | MR 533066 | Zbl 0406.10022

[GS01] A. Granville and K. Soundararajan, Large character sums. J. Amer. Math. Soc. 14 (2001), no. 2, 365–397 (electronic). | MR 1815216 | Zbl 0983.11053

[GS03] A. Granville and K. Soundararajan, The distribution of values of L(1,χ d ). Geom. Funct. Anal. 13 (2003), no. 5, 992–1028. | MR 2024414 | Zbl 1044.11080

[Guo96] J. Guo, On the positivity of the central critical values of automorphic L-functions for GL (2). Duke Math. J. 83 (1996), no. 1, 157–190. | MR 1388847 | Zbl 0861.11032

[HL94] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero. Ann. of Math. (2) 140 (1994), no. 1, 161–181, With an appendix by D. Goldfeld, J. Hoffstein and D. Lieman. | MR 1289494 | Zbl 0814.11032

[HR95] J. Hoffstein and D. Ramakrishnan, Siegel zeros and cusp forms. Internat. Math. Res. Notices (1995), no. 6, 279–308. | MR 1344349 | Zbl 0847.11043

[HR04] L. Habsieger and E. Royer, L-functions of automorphic forms and combinatorics: Dyck paths. Ann. Inst. Fourier (Grenoble) 54 (2004), no. 7, 2105–2141 (2005). | Numdam | MR 2139690 | Zbl pre02162451

[Igu59] Jun-ichi Igusa, Kroneckerian model of fields of elliptic modular functions. Amer. J. Math. 81 (1959), 561–577. | MR 108498 | Zbl 0093.04502

[IK04] H. Iwaniec and E. Kowalski, Analytic number theory. American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. | MR 2061214 | Zbl 1059.11001

[ILS00] H. Iwaniec, W. Luo, and P. Sarnak, Low lying zeros of families of L-functions. Inst. Hautes Études Sci. Publ. Math. (2000), no. 91, 55–131 (2001). | Numdam | MR 1828743 | Zbl 1012.11041

[IS00] H. Iwaniec and P. Sarnak, The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros. Israel J. Math. 120 (2000), part A, 155–177. | MR 1815374 | Zbl 0992.11037

[Kim03] H. H. Kim, Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2 . J. Amer. Math. Soc. 16 (2003), no. 1, 139–183 (electronic), With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. | MR 1937203 | Zbl 1018.11024

[KMV00] E. Kowalski, P. Michel, and J. VanderKam, Mollification of the fourth moment of automorphic L-functions and arithmetic applications. Invent. Math. 142 (2000), no. 1, 95–151. | MR 1784797 | Zbl 1054.11026

[KS02a] H. H. Kim and F. Shahidi, Functorial products for GL 2 × GL 3 and the symmetric cube for GL 2 . Ann. of Math. (2) 155 (2002), no. 3, 837–893, With an appendix by Colin J. Bushnell and Guy Henniart. | MR 1923967 | Zbl 1040.11036

[KS02b] H.H. Kim and F. Shahidi, Cuspidality of symmetric powers with applications. Duke Math. J. 112 (2002), no. 1, 177–197. | MR 1890650 | Zbl 1074.11027

[Lit28] J.E. Littlewood, On the class number of the corpus P(-k). Proc. London Math. Soc. 27 (1928), 358–372.

[Luo99] W. Luo, Values of symmetric square L-functions at 1. J. Reine Angew. Math. 506 (1999), 215–235. | MR 1665705 | Zbl 0969.11018

[Luo01] W. Luo, Nonvanishing of L-values and the Weyl law. Ann. of Math. (2) 154 (2001), no. 2, 477–502. | MR 1865978 | Zbl 1003.11019

[LW06] Y.-K. Lau and J. Wu, A density theorem on automorphic L-functions and some applications. Trans. Amer. Math. Soc. 358 (2006), no. 1, 441–472 (electronic). | MR 2171241 | Zbl 1078.11032

[LW07] Y.-K. Lau and J. Wu, A large sieve inequality of Elliott-Montgomery-Vaughan type for automorphic forms and two applications. preprint (2007).

[Mic02] P. Michel, Analytic number theory and families of automorphic L-functions. in Automorphic Forms and Applications. P. Sarnak & F. Shahidi ed., IAS/Park City Mathematics Series, vol. 12, American Mathematical Society, Providence, RI, 2007. | MR 2331346 | Zbl pre05233939

[MV99] H. L. Montgomery and R. C. Vaughan, Extreme values of Dirichlet L-functions at 1. Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, pp. 1039–1052. | MR 1689558 | Zbl 0942.11040

[Roy01] E. Royer, Statistique de la variable aléatoire L( sym 2 f,1). Math. Ann. 321 (2001), no. 3, 667–687. | MR 1871974 | Zbl 1006.11023

[Roy03] E. Royer, Interprétation combinatoire des moments négatifs des valeurs de fonctions L au bord de la bande critique. Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 4, 601–620. | Numdam | MR 2013928 | Zbl 1050.11055

[RW03] D. Ramakrishnan and S. Wang, On the exceptional zeros of Rankin-Selberg L-functions. Compositio Math. 135 (2003), no. 2, 211–244. | MR 1955318 | Zbl 1043.11046

[RW05] E. Royer and J. Wu, Taille des valeurs de fonctions L de carrés symétriques au bord de la bande critique. Rev. Mat. Iberoamericana 21 (2005), no. 1, 263–312. | MR 2155022 | Zbl pre02212054

[Sar87] P. Sarnak, Statistical properties of eigenvalues of the Hecke operators. Analytic number theory and Diophantine problems (Stillwater, OK, 1984), Birkhäuser Boston, Boston, MA, 1987, pp. 321–331. | MR 1018385 | Zbl 0628.10028

[Ser97] J.-P. Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke T p . J. Amer. Math. Soc. 10 (1997), no. 1, 75–102. | Zbl 0871.11032

[TW03] G. Tenenbaum and J. Wu, Moyennes de certaines fonctions multiplicatives sur les entiers friables. J. Reine Angew. Math. 564 (2003), 119–166. | MR 2021037 | Zbl pre02005601

[Vil68] N. Ja. Vilenkin, Special functions and the theory of group representations. Translated from the Russian by V. N. Singh. Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, R. I., 1968. | MR 229863 | Zbl 0172.18404