Variants of the Brocard-Ramanujan equation
Journal de théorie des nombres de Bordeaux, Volume 20 (2008) no. 2, p. 353-363

In this paper, we discuss variations on the Brocard-Ramanujan Diophantine equation.

Dans cet article, nous étudions quelques variations sur l’équation diophantienne de Brocard-Ramanujan.

@article{JTNB_2008__20_2_353_0,
     author = {Kihel, Omar and Luca, Florian},
     title = {Variants of the Brocard-Ramanujan equation},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux 1},
     volume = {20},
     number = {2},
     year = {2008},
     pages = {353-363},
     doi = {10.5802/jtnb.631},
     mrnumber = {2477508},
     zbl = {1171.11020},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2008__20_2_353_0}
}
Kihel, Omar; Luca, Florian. Variants of the Brocard-Ramanujan equation. Journal de théorie des nombres de Bordeaux, Volume 20 (2008) no. 2, pp. 353-363. doi : 10.5802/jtnb.631. http://www.numdam.org/item/JTNB_2008__20_2_353_0/

[1] D. Berend, C. Osgood, On the equation P(x)=n! and a question of Erdős. J. Number Theory 42 (1992), no. 2, 189–193. | MR 1183375 | Zbl 0762.11010

[2] D. Berend, J.E. Harmse, On polynomial-factorial diophantine equations. Trans. Amer. Math. Soc. 358 (2005), no 4, 1741–1779. | MR 2186995 | Zbl 1114.11029

[3] B.C. Berndt, W.F. Galway, On the Brocard-Ramanujan Diophantine equation n!+1=m 2 . The Ramanujan Journal 4 (2000), 41–42. | MR 1754629 | Zbl 0999.11078

[4] H. Brocard, Question 166. Nouv. Corresp. Math. 2 (1876), 287.

[5] H. Brocard, Question 1532. Nouv. Ann. Math. 4 (1885), 291.

[6] A. Dabrowski, On the diophantine equation n!+A=y 2 . Nieuw Arch. Wisk. 14 (1996), 321–324. | MR 1430045 | Zbl 0876.11015

[7] P. Erdős, R. Obláth, Über diophantische Gleichungen der Form n!=x p ±y p und n!±m!=x p . Acta Szeged 8 (1937), 241–255. | JFM 63.0113.02 | Zbl 0017.00404

[8] A. Gérardin, Contribution à l’étude de l’équation 1·2·3·4z+1=y 2 . Nouv. Ann. Math. 6 (4) (1906), 222–226. | JFM 37.0230.03 | Numdam

[9] H. Gupta, On a Brocard-Ramanujan problem. Math. Student 3 (1935), 71. | JFM 61.1074.28

[10] E. Landau, Handbuch der Lehre von der verteilung der Primzahlen, 3rd Edition. Chelsea Publ. Co., 1974.

[11] F. Luca, The Diophantine equation P(x)=n! and a result of M. Overholt. Glas. Mat. Ser. III 37 (57) no. 2 (2002), 269–273. | MR 1951531 | Zbl 1085.11023

[12] H.L. Montogomery, R.C. Vaughan, The large sieve. Mathematika 20 (1973), 119–134. | MR 374060 | Zbl 0296.10023

[13] M. Overholt, The diophantine equation n!+1=m 2 . Bull. London Math. Soc. 25 (1993), 104. | MR 1204060 | Zbl 0805.11030

[14] R. M. Pollack, H. N. Shapiro, The next to last case of a factorial diophantine equation. Comm. Pure Appl. Math. 26 (1973), 313–325. | MR 360465 | Zbl 0276.10011

[15] S. Ramanujan, Question 469. J. Indian Math. Soc. 5 (1913), 59.

[16] S. Ramanujan, Collected papers. New York, 1962.

[17] S. Wolfram, Math World. http://mathworld.wolfram.com/WilsonTheorem.html