Pretentiousness in analytic number theory
Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 1, p. 159-173

In this report, prepared specially for the program of the XXVième Journées Arithmétiques, we describe how, in joint work with K. Soundararajan and Antal Balog, we have developed the notion of “pretentiousness” to help us better understand several key questions in analytic number theory.

Dans ce rapport, préparé spécialement pour les XXVième Journées Arithmétiques, nous décrivons, dans un travail commun avec K. Soundararajan et Antal Balog, comment nous avons développé la notion de “prétention” pour nous aider à mieux comprendre plusieurs questions au sein de la théorie analytique des nombres.

@article{JTNB_2009__21_1_159_0,
     author = {Granville, Andrew},
     title = {Pretentiousness in analytic number theory},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux 1},
     volume = {21},
     number = {1},
     year = {2009},
     pages = {159-173},
     doi = {10.5802/jtnb.664},
     mrnumber = {2537710},
     zbl = {pre05620675},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2009__21_1_159_0}
}
Granville, Andrew. Pretentiousness in analytic number theory. Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 1, pp. 159-173. doi : 10.5802/jtnb.664. http://www.numdam.org/item/JTNB_2009__21_1_159_0/

[1] A. Balog, A. Granville, K. Soundararajan, Multiplicative Functions in Arithmetic Progressions (to appear). | MR 1691308

[2] E. Bombieri, Le grand crible dans la théorie analytique des nombres . Astérisque 18 (1987/1974). | MR 891718 | Zbl 0292.10035

[3] D.A. Burgess, On character sums and L-series, I. Proc. London Math. Soc. 12 (1962), 193–206. On character sums and L-series, II . Proc. London Math. Soc. 13 (1963), 524–536. | MR 132733 | Zbl 0106.04004

[4] H. Davenport, Multiplicative number theory. Springer Verlag, New York, 1980. | MR 606931 | Zbl 0453.10002

[5] J.B. Friedlander, Selberg’s formula and Siegel’s zero. In Recent progress in analytic number theory, Vol. 1 (Durham, 1979), 15–23. Academic Press, London-New York, 1981. | MR 637340 | Zbl 0459.10029

[6] P.X. Gallagher, A large sieve density estimate near σ=1 . Invent. Math. 11 (1970), 329–339. | MR 279049 | Zbl 0219.10048

[7] A. Granville, G. Martin, Prime Number Races. Amer. Math. Monthly 113 (2006), 1–33. | MR 2202918 | Zbl 1139.11037

[8] A. Granville, K. Soundararajan, The Spectrum of Multiplicative Functions. Ann. of Math. 153 (2001), 407–470. | MR 1829755 | Zbl 1036.11042

[9] A. Granville, K. Soundararajan, Large Character Sums. J. Amer. Math. Soc 14 (2001), 365–397. | MR 1815216 | Zbl 0983.11053

[10] A. Granville, K. Soundararajan, Large Character sums: pretentious characters and the Pólya-Vinogradov theorem. J. Amer. Math. Soc. 20 (2007), 357–384. | MR 2276774 | Zbl pre05120647

[11] A. Granville, K. Soundararajan, Large Character Sums: pretentious characters, Burgess’s theorem and the location of zeros (to appear). | MR 1815216 | Zbl pre05120647

[12] G. Halász, On the distribution of additive and mean-values of multiplicative functions. Stud. Sci. Math. Hungar. 6 (1971), 211–233. | MR 319930 | Zbl 0226.10046

[13] G. Halász, On the distribution of additive arithmetic functions. Acta Arith. 27 (1975), 143–152. | MR 369292 | Zbl 0256.10028

[14] H. Iwaniec, E. Kowalski, Analytic number theory. Amer. Math. Soc., Providence, Rhode Island, 2004. | MR 2061214 | Zbl 1059.11001

[15] H.L. Montgomery, R.C. Vaughan, Exponential sums with multiplicative coefficients. Invent. Math. 43 (1977), 69–82. | MR 457371 | Zbl 0362.10036

[16] R.E.A.C. Paley, A theorem on characters. J. London Math. Soc. 7 (1932), 28–32. | Zbl 0003.34101

[17] G. Pólya , Über die Verteilung der quadratischen Reste und Nichtreste. Göttingen Nachrichten (1918), 21–29.

[18] A. Selberg, An elementary proof of the prime number theorem for arithmetic progressions. Can. J. Math. 2 (1950), 66–78. | MR 33306 | Zbl 0036.30605

[19] I.M. Vinogradov, Über die Verteilung der quadratischen Reste und Nichtreste. J. Soc. Phys. Math. Univ. Permi 2 (1919), 1–14.