Pour et impair suffisamment grand, nous montrons que, pour presque tout , il existe une représentation avec des nombres premiers modulo pour presque tout triplet admissible de résidus modulo .
For and any sufficiently large odd we show that for almost all there exists a representation with primes mod for almost all admissible triplets of reduced residues mod .
@article{JTNB_2009__21_1_203_0, author = {Halupczok, Karin}, title = {On the ternary {Goldbach} problem with primes in arithmetic progressions having a common modulus}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {203--213}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {1}, year = {2009}, doi = {10.5802/jtnb.666}, mrnumber = {2537712}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.666/} }
TY - JOUR AU - Halupczok, Karin TI - On the ternary Goldbach problem with primes in arithmetic progressions having a common modulus JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 203 EP - 213 VL - 21 IS - 1 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.666/ DO - 10.5802/jtnb.666 LA - en ID - JTNB_2009__21_1_203_0 ER -
%0 Journal Article %A Halupczok, Karin %T On the ternary Goldbach problem with primes in arithmetic progressions having a common modulus %J Journal de théorie des nombres de Bordeaux %D 2009 %P 203-213 %V 21 %N 1 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.666/ %R 10.5802/jtnb.666 %G en %F JTNB_2009__21_1_203_0
Halupczok, Karin. On the ternary Goldbach problem with primes in arithmetic progressions having a common modulus. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 1, pp. 203-213. doi : 10.5802/jtnb.666. http://archive.numdam.org/articles/10.5802/jtnb.666/
[1] A. Balog, The Prime -Tuplets Conjecture on Average. Analytic number theory, Proc. Conf. in Honor of Paul T. Bateman, Urbana/IL (USA), 1989, Prog. Math. 85 (1990), 47–75. | MR | Zbl
[2] C. Bauer, Y. Wang, On the Goldbach conjecture in arithmetic progressions. Rocky Mountain J. Math. 36 (1) (2006), 35–66. | MR | Zbl
[3] Z. Cui, The ternary Goldbach problem in arithmetic progression II. Acta Math. Sinica (Chin. Ser.) 49 (1) (2006), 129–138. | MR
[4] J. Liu, T. Zhang, The ternary Goldbach problem in arithmetic progressions. Acta Arith. 82 (3) (1997), 197–227. | MR | Zbl
[5] M. B. Nathanson, Additive Number Theory: The Classical Bases. Graduate texts in Mathematics 164, Springer-Verlag, 1996. | MR | Zbl
Cité par Sources :