Fonctions zêta des hauteurs
Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 1, p. 77-95

The paper surveys recent progress towards the Height zeta functions related to the Manin’s conjecture. In particular, it details some cases where one can prove meromorphic continuation of these functions.

Ce papier présente les récents progrès concernant les fonctions zêta des hauteurs associées à la conjecture de Manin. En particulier, des exemples où on peut prouver un prolongement méromorphe de ces fonctions sont détaillés.

@article{JTNB_2009__21_1_77_0,
     author = {de la Bret\`eche, R\'egis},
     title = {Fonctions z\^eta des hauteurs},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux 1},
     volume = {21},
     number = {1},
     year = {2009},
     pages = {77-95},
     doi = {10.5802/jtnb.658},
     mrnumber = {2537704},
     zbl = {pre05620669},
     language = {fr},
     url = {http://www.numdam.org/item/JTNB_2009__21_1_77_0}
}
de la Bretèche, Régis. Fonctions zêta des hauteurs. Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 1, pp. 77-95. doi : 10.5802/jtnb.658. http://www.numdam.org/item/JTNB_2009__21_1_77_0/

[1] S. J. Arakelov, Theory of intersections on the arithmetic surface. Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 1, 405–408. Canad. Math. Congress, Montreal, Que., 1975. | MR 466150 | Zbl 0351.14003

[2] V.V. Batyrev, Y.I. Manin, Sur les points rationnels de hauteur bornée des variétés algébriques. Math. Ann. 286 (1990), 27–43. | MR 1032922 | Zbl 0679.14008

[3] V.V. Batyrev, Y. Tschinkel, Rational points of bounded height on compactifications of anisotropic toric. Internat. Math. Res. Notices 12 (1995), 591–635. | MR 1369408 | Zbl 0890.14008

[4] V.V. Batyrev, Y. Tschinkel, Height Zeta functions of Toric Varieties, Algebraic geometry 5, Manin’s Festschrift. J. Math. Sci. 82 (1996), n  1, 3220–3239. | MR 1423638 | Zbl 0915.14013

[5] V.V. Batyrev, Y. Tschinkel, Manin’s Conjecture for Toric Varieties. J. of Algebraic Geometry 7 (1998), 15–53. | MR 1620682 | Zbl 0946.14009

[6] V.V. Batyrev, Y. Tschinkel, Tamagawa numbers of polarized algebraic varieties. Astérisque 251 (1998), 299–340. | MR 1679843 | Zbl 0926.11045

[7] G. Bhowmik, D. Essouabri, B. Lichtin, Meromorphic Continuation of Multivariable Euler Products and Applications. ArXiv math.NT/0502508, à paraître à Forum Math. | MR 2367957 | Zbl pre05237817

[8] G. Bhowmik, J.-C. Schlage-Puchta, Natural boundaries of Dirichlet series. Functiones et Approximatio 37 (2007), 17–29. | MR 2357306 | Zbl 1146.30002

[9] R. de la Bretèche, Sur le nombre de points de hauteur bornée d’une certaine surface cubique singulière. Astérisque 251 (1998), 51–77. | MR 1679839 | Zbl 0969.14014

[10] R. de la Bretèche, Compter des points sur des variétés toriques. Journal of Number Theory 87 (2001), n  2, 315–331. | MR 1824152 | Zbl 1020.11045

[11] R. de la Bretèche, Nombre de points de hauteur bornée sur les surfaces de del Pezzo de degré 5. Duke Math. J. 113 (2002), n  3, 421–464. | MR 1909606 | Zbl 1054.14025

[12] R. de la Bretèche, T.D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree four, I. Michigan Mathematical Journal 55 (2007), 51–80. | MR 2320172 | Zbl 1132.14019

[13] R. de la Bretèche, T.D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree four, II. Math. Proc. Camb. Phil. Soc., à paraître. | Zbl 1132.14020

[14] R. de la Bretèche, T.D. Browning, U. Derenthal, On Manin’s conjecture for a certain singular cubic surface. Annales scientifiques de l’ENS, 4-ème série, 40 (2007), 1–50. | Numdam | MR 2332351 | Zbl 1125.14008

[15] R. de la Bretèche, É. Fouvry, L’éclaté du plan projectif en quatre points dont deux conjugués. J. reine angew. Math. 576 (2004), 63–122. | MR 2099200 | Zbl 1065.11080

[16] R. de la Bretèche, Sir P. Swinnerton-Dyer, Fonction zêta des hauteurs associée à une certaine surface cubique. Bulletin de la SMF 135 (2007), 65–92. | Numdam | MR 2430199 | Zbl pre05366154

[17] T.D. Browning, The density of rational points on a certain singular cubic surface. J. Number Theory 119 (2006), 242–283. | MR 2250046 | Zbl 1119.11034

[18] T.D. Browning, An overview of Manin’s conjecture for del Pezzo surfaces. Analytic number theory - A tribute to Gauss and Dirichlet (Goettingen, 20th June - 24th June, 2005), Clay Mathematics Proceedings 7 (2007), 39–56. | MR 2362193 | Zbl 1134.14017

[19] A. Chambert-Loir, Y. Tschinkel, Yuri Points of bounded height on equivariant compactifications of vector groups, I Compositio Math. 124 (2000), no. 1, 65–93. | MR 1797654 | Zbl 0963.11033

[20] A. Chambert-Loir, Y. Tschinkel, Points of bounded height on equivariant compactifications of vector groups, II. J. Number Theory 85 (2000), no. 2, 172–188. | MR 1802710 | Zbl 0963.11034

[21] A. Chambert-Loir, Y. Tschinkel, Fonctions zêta des hauteurs des espaces fibrés. Rational points on algebraic varieties, 71–115, Progr. Math. 199, Birkhäuser, Basel, 2001. | MR 1875171 | Zbl 1077.14524

[22] A. Chambert-Loir, Y. Tschinkel, On the distribution of points of bounded height on equivariant compactifications of vector groups. Invent. Math. 148 (2002), 421–452. | MR 1906155 | Zbl 1067.11036

[23] J.-L. Colliot-Thélène, J.-J. Sansuc, La descente sur les variétés rationnelles. Journée de géométrie algébrique d’Angers (1979) (A. Beauville, ed.) Sijthoff, Noordhoff, Alphen aan den Rijn, 1980, 223–237. | MR 605344 | Zbl 0451.14018

[24] J.-L. Colliot-Thélène, J.-J. Sansuc, La descente sur les variétés rationnelles, II. Duke Math. J. 54 (1987), no 2, 375–492. | MR 899402 | Zbl 0659.14028

[25] U. Derenthal, Manin’s conjecture for a cubic surface. ArXiv :math.NT/0504016, (2005).

[26] U. Derenthal, Y. Tschinkel, Universal torsors over Del Pezzo surfaces and rational points. « Equidistribution in Number theory, An Introduction », (A. Granville, Z. Rudnick eds.), 169–196, NATO Science Series II 237, Springer, (2007). | MR 2290499 | Zbl 1143.14017

[27] D. Essouabri, Prolongements analytiques d’une classe de fonction zêta des hauteurs et applications. Bull. Soc. Math. France 133 (2) (2005), 297–329. | Numdam | MR 2172269 | Zbl 1081.14031

[28] E. Fouvry, Sur la hauteur des points d’une certaine surface cubique singulière. Astérisque 251 (1998), 31–49. | MR 1679838 | Zbl 0930.11044

[29] T. Estermann, On certain functions represented by Dirichlet series. Proc. London Math. Soc. 27 (1928), 433–448.

[30] J. Franke, Y.I. Manin, Y. Tschinkel, Rational points of bounded height on Fano varieties. Invent. Math. 95 (1989), 421–435. | MR 974910 | Zbl 0674.14012

[31] A. Gorodnik, F. Maucourant, H. Oh, Manin’s conjecture on rational points of bounded height and adelic mixing. Annales scientifiques de l’École Normale Supérieure, série 4, 41, fascicule 3 (2008), 385–437. | Numdam | MR 2482443 | Zbl 1161.14015

[32] B. Hassett, Y. Tschinkel, Universal torsors and Cox rings. Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), 149–173, Progr. Math. 226, Birkhäuser, 2004. | MR 2029868 | Zbl 1077.14046

[33] R. Heath-Brown, The density of rational points on cubic surfaces. Acta Arith. 19 (1997), 17–30. | MR 1438113 | Zbl 0863.11021

[34] R. Heath-Brown, B.Z. Moroz, The density of Rational Points on the cubic surface X 0 3 =X 1 X 2 X 3 . Math. Proc. Camb. Phil. Soc. 125 (1999), n  3, 385–395. | MR 1656797 | Zbl 0938.11016

[35] M. N. Huxley, Exponential sums and the Riemann zeta function, V. Proc. London Math. Soc. (3) 90 (2005), no. 1, 1–41. | MR 2107036 | Zbl 1083.11052

[36] A. Ivić, The Riemann zeta-function. John Wiley, Sons Inc., New York, (1985). | MR 792089 | Zbl 0556.10026

[37] H. Iwaniec, C.J. Mozzochi, On the divisor and circle problems, J. Number Theory 29 (1988), no. 1, 60–93. | MR 938870 | Zbl 0644.10031

[38] N. Kurokawa, On the meromorphy of Euler products, I and II. Proc. London Math. Soc. (3) 53 (1986), no. 1, 1–47 and 209–236. | MR 842154 | Zbl 0595.10031

[39] Y. Manin, Y. Tschinkel, Points of bounded height on del Pezzo surfaces. Compositio Math. 85 (1993), n  3, 315–332. | Numdam | MR 1214451 | Zbl 0782.14033

[40] E. Peyre, Hauteurs et nombres de Tamagawa sur les variétés de Fano. Duke Math. J. 79 (1995), 101–218. | MR 1340296 | Zbl 0901.14025

[41] E. Peyre, Terme principal de la fonction zêta des hauteurs et torseurs universels. Astérisque 251 (1998), 259–298. | MR 1679842 | Zbl 0966.14016

[42] E. Peyre, Points de hauteur bornée et géométrie des variétés (d’après Y. Manin et al.). Séminaire Bourbaki, Vol. 2000/2001. Astérisque 282 (2002), Exp. n  891, ix, 323–344. | Numdam | MR 1975184 | Zbl 1039.11045

[43] E. Peyre, Points de hauteur bornée, topologie adélique et mesures de Tamagawa. Les XXIIèmes Journées Arithmetiques (Lille, 2001), J. Théor. Nombres Bordeaux 15 (2003), n  1, 319–349. | Numdam | MR 2019019 | Zbl 1057.14031

[44] E. Peyre, Counting points on varieties using universal torsors. Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), 61–81, Progr. Math. 226, Birkhäuser Boston, Boston, MA, 2004. | MR 2029862 | Zbl pre02158893

[45] P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque 251 (1998), 91–258. | MR 1679841 | Zbl 0959.14007

[46] M. du Sautoy, Zeta Functions of Groups and Natural Boundaries. Preprint 2000, 79 pages. | MR 1765124

[47] J.A. Shalika, Y. Tschinkel, Height zeta functions of equivariant compactifications of the Heisenberg group. Contributions to automorphic forms, geometry, and number theory, 743–771, Johns Hopkins Univ. Press, Baltimore, MD, 2004. | MR 2058627 | Zbl pre02149798

[48] J.A. Shalika, R. Takloo-Bighash, Y. Tschinkel, Rational points on compactifications of semi-simple groups of rank 1. Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), 205–233, Progr. Math. 226, Birkhüser Boston, Boston, MA, 2004. | MR 2029871 | Zbl pre02158902

[49] M. Strauch, Y. Tschinkel, Height zeta functions of twisted products. Math. Res. Lett. 4 (1997), n  2-3, 273–282. | MR 1453059 | Zbl 0918.11036

[50] M. Strauch, Y. Tschinkel, Height zeta functions of toric bundles over flag varieties. Selecta Math. (N.S.) 5 (1999), n  3, 325–396. | MR 1723811 | Zbl 1160.14302

[51] Sir P. Swinnerton-Dyer, Counting points on cubic surfaces II. Geometric methods in algebra and number theory, (Eds. F. Bogomolov and Y. Tschinkel), Progress in Mathematics 235, Birkhäuser, 2004. | MR 2166089 | Zbl 1127.11043

[52] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres. Cours spécialisés, n  1, Société Mathématique de France (1995), xv + 457 pp. | MR 1366197 | Zbl 0880.11001

[53] E.C. Titchmarsh, The theory of the Riemann zeta-function. 2nd ed., revised by D.R. Heath-Brown. Oxford University Press, 1986. | MR 882550 | Zbl 0601.10026

[54] Y. Tschinkel, Lectures on height zeta functions of toric varieties. Geometry of toric varieties, 227–247, Sémin. Congr. 6, Soc. Math. France, Paris, 2002. | MR 2075613 | Zbl 1064.14018

[55] Y. Tschinkel, Fujita’s program and rational points. “Higher Dimensional Varieties and Rational Points”, (K. J. Böröczky, J. Kollár, T. Szamuely eds.), Bolyai Society Mathematical Studies 12, Springer Verl., 2003, 283–310. | MR 2011749 | Zbl 1112.14021