Landau’s problems on primes
Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 2, p. 357-404

At the 1912 Cambridge International Congress Landau listed four basic problems about primes. These problems were characterised in his speech as “unattackable at the present state of science”. The problems were the following :

  • (1) Are there infinitely many primes of the form n 2 +1?
  • (2) The (Binary) Goldbach Conjecture, that every even number exceeding 2 can be written as the sum of two primes.
  • (3) The Twin Prime Conjecture.
  • (4) Does there exist always at least one prime between neighbouring squares?

All these problems are still open. In the present work a survey will be given about partial results in Problems (2)–(4), with special emphasis on the recent results of D. Goldston, C. Yıldırım and the author on small gaps between primes.

Au congrès international de Cambridge en 1912, Laudau dressa la liste de quatre problèmes de base sur les nombres premiers. Ces problèmes furent caractérisés dans son discours comme “inaccessibles en l’état actuel de la science”. Ces problèmes sont les suivants :

  • (1) Existe-t-il une infinité de nombres premiers de la forme n 2 +1 ?
  • (2) La conjecture (binaire) de Goldbach, que chaque nombre pair supérieur à 2 est somme de deux nombres premiers.
  • (3) La conjecture des nombres premiers jumeaux.
  • (4) Existe-t-il toujours un nombre premier entre deux carrés consécutifs ?

Tous ces problèmes sont encore ouverts. Le travail présenté ici est un exposé des résultats partiels aux problèmes (2)–(4), avec une attention particuliere concernant les résultats récents de D. Goldston, C. Yıldırım et de l’auteur sur les petits écarts entre nombres premiers.

@article{JTNB_2009__21_2_357_0,
     author = {Pintz, J\'anos},
     title = {Landau's problems on primes},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux 1},
     volume = {21},
     number = {2},
     year = {2009},
     pages = {357-404},
     doi = {10.5802/jtnb.676},
     mrnumber = {2541431},
     zbl = {pre05620656},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2009__21_2_357_0}
}
Pintz, János. Landau’s problems on primes. Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 2, pp. 357-404. doi : 10.5802/jtnb.676. http://www.numdam.org/item/JTNB_2009__21_2_357_0/

[1] R. J. Backlund, Über die Differenzen zwischen den Zahlen, die zu den ersten n Primzahlen teilerfremd sind. Commentationes in honorem E. L. Lindelöf. Annales Acad. Sci. Fenn. 32 (1929), Nr. 2, 1–9.

[2] R. C. Baker, G. Harman, The difference between consecutive primes. Proc. London Math. Soc. (3) 72 (1996), 261–280. | MR 1367079 | Zbl 0853.11076

[3] R. C. Baker, G. Harman, J. Pintz, The exceptional set for Goldbach’s problem in short intervals, in: Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995). 1–54, London Math. Soc. Lecture Note Ser. 237, Cambridge Univ. Press, Cambridge, 1997. | MR 1635718 | Zbl 0929.11042

[4] R. C. Baker, G. Harman, J. Pintz, The difference between consecutive primes, II. Proc. London Math. Soc. (3) 83 (2001), no. 3, 532–562. | MR 1851081 | Zbl 1016.11037

[5] A. Balog, On the fractional part of p ϑ . Archiv Math. 40 (1983), 434–440. | MR 707732 | Zbl 0517.10038

[6] M. B. Barban, The density of zeros of Dirichlet L-series and the problem of the sum of primes and near primes. Mat. Sb. 61 (1963), 418–425 (Russian). | MR 171765 | Zbl 0127.26903

[7] P. T. Bateman, R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp. 16 (1962), 363–367. | MR 148632 | Zbl 0105.03302

[8] J. Bertrand, Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu’elle enferme. J. École Roy. Polytechnique 18 (1845), 123–140.

[9] E. Bombieri, On the large sieve. Mathematika 12 (1965), 201–225. | MR 197425 | Zbl 0136.33004

[10] E. Bombieri, H. Davenport, Small differences between prime numbers. Proc. Roy. Soc. Ser. A 293 (1966), 1–18. | MR 199165 | Zbl 0151.04201

[11] A. Brauer, H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre. Sber. Berliner Math. Ges. 29 (1930), 116–125. | JFM 56.0156.02

[12] H. Brocard, L’intermédiaire des math. 4 (1897), p. 159.

[13] V. Brun, Le crible d’Eratosthéne et le théorème de Goldbach. Videnselsk. Skr. 1 (1920), Nr. 3. | JFM 47.0162.02

[14] A. A. Buhštab, New improvements in the sieve of Eratosthenes. Mat. Sb. 4 (1938), 357–387 (Russian). | Zbl 0022.11304

[15] A. A. Buhštab, Sur la décomposition des nombres pairs en somme de deux composantes dont chacune est formée d’un nombre borné de facteurs premiers. Doklady Akad. Nauk. SSSR 29 (1940), 544–548. | JFM 66.0158.02 | MR 4263

[16] A. A. Buhštab, New results in the investigation of Goldbach–Euler’s problem and the problem of twin prime numbers. Doklady Akad. Nauk. SSSR 162 (1965), 735–738 (Russian). | MR 177968 | Zbl 0127.02101

[17] A. A. Buhštab, A combinatorial strengthening of the Eratosthenian sieve method. Usp. Mat. Nauk 22 (1967), no. 3, 199–226 (Russian). | MR 218326 | Zbl 0199.09001

[18] Y. Buttkewitz, Master’s Thesis. Freiburg Univ., 2003.

[19] F. Carlson, Über die Nullstellen der Dirichletschen Reihen und der Riemannscher ζ-Funktion. Arkiv f. Math. Astr. Fys. 15 (1920), No. 20. | JFM 47.0282.03

[20] P. L. Čebyšev, Mémoire sur les nombres premiers. Mémoire des seuvants étrangers de l’Acad. Sci. St. Pétersbourg 7 (1850), 17–33.

[21] Jing Run Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao 17 (1966), 385–386 (Chinese). | MR 207668

[22] Jing Run Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16 (1973), 157–176. | MR 434997 | Zbl 0319.10056

[23] Jing Run Chen, On the distribution of almost primes in an interval. Sci. Sinica 18 (1975), 611–627. | MR 457378 | Zbl 0381.10033

[24] Jing Run Chen, Jian Min Liu, The exceptional set of Goldbach numbers, III. Chinese Quart. J. Math. 4 (1989), 1–15. | MR 1014098

[25] J. G. van der Corput, Sur l’hypothése de Goldbach pour presque tous les nombres pairs. Acta Arith. 2 (1937), 266–290. | Zbl 0018.05203

[26] H. Cramér, Some theorems concerning prime numbers. Arkiv f. Math. Astr. Fys. 15 (1920), No. 5, 1–33. | JFM 47.0156.01

[27] H. Cramér, Prime numbers and probability. Skand. Math. Kongr. 8 (1935), 107–115. | Zbl 0011.40801

[28] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2 (1936), 23–46. | Zbl 0015.19702

[29] N. G. Čudakov, On the zeros of Dirichlet’s L-functions. Mat. Sb. 1 (1936a), 591–602. | JFM 62.0344.03 | Zbl 0063.07326

[30] N. G. Čudakov, On the difference between two neighbouring prime numbers. Mat. Sb. 1 (1936b), 799–814. | JFM 62.1148.01 | Zbl 0016.15502

[31] N. G. Čudakov, On the density of the set of even numbers which are not representable as a sum of two primes. Izv. Akad. Nauk. SSSR 2 (1938), 25–40. | JFM 64.0986.04 | Zbl 0019.00603

[32] H. Davenport, Multiplicative Number Theory. Revised by Hugh L. Montgomery, 2nd edition, Springer, Berlin, Heidelberg, New York, 1980. | MR 606931 | Zbl 0453.10002

[33] A. Desboves, Sur un théorème de Legendre et son application à la recherche de limites qui comprennent entre elles des nombres premiers. Nouv. Ann. Math. 14 (1855), 281–295.

[34] Descartes, Opuscula Posthuma, Excerpta Mathematica. Vol. 10, 1908.

[35] J.-M. Deshouillers, Amélioration de la constante de Šnirelman dans le probléme de Goldbach. Sém. Delange, Pisot, Poitou 14 (1972/73), exp. 17. | Numdam | MR 417088 | Zbl 0322.10021

[36] J.-M. Deshouillers, Sur la constante de Šnirelman. Sém. Delange, Pisot, Poitu 17 (1975/76), exp. 16. | Numdam | Zbl 0357.10025

[37] J.-M. Deshouillers, H. Iwaniec, On the greatest prime factor of n 2 +1. Ann. Inst. Fourier 32 (1982), 1–11. | Numdam | MR 694125 | Zbl 0489.10038

[38] J.-M. Deshouillers, G. Effinger, H. te Riele, D. Zinoviev, A complete Vinogradov 3-primes theorem under the Riemann hypothesis. Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 99–104. | MR 1469323 | Zbl 0892.11032

[39] L. E. Dickson, A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math. (2), 33 (1904), 155–161. | JFM 35.0204.03

[40] P. G. L. Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhandl. Kgl. Preuß. Akad. Wiss. (1837), 45–81. [Werke, I, 313–342. G. Reimer, Berlin, 1889; French translation: J. math. pures appl. 4, 1839, 393–422.]

[41] P. D. T. A. Elliott, H. Halberstam, A conjecture in prime number theory. Symposia Mathematica 4 INDAM, Rome, 59–72, Academic Press, London, 1968/69. | MR 276195 | Zbl 0238.10030

[42] P. Erdős, On the difference of consecutive primes. Quart. J. Math. Oxford ser. 6 (1935), 124–128. | JFM 61.0134.03 | MR 1759 | Zbl 0012.01102

[43] P. Erdős, The difference of consecutive primes. Duke Math. J. 6 (1940), 438–441. | JFM 66.0162.04 | MR 1759

[44] P. Erdős, Some problems on number theory, in: Analytic and elementary number theory (Marseille, 1983). Publ. Math. Orsay, 86-1 (1983), 53–57. | MR 844584

[45] P. Erdős, L. Mirsky, The distribution of values of the divisor function d(n). Proc. London Math. Soc. (3) 2 (1952), 257–271. | MR 49932 | Zbl 0047.04602

[46] T. Estermann, Eine neue Darstellung und neue Anwendungen der Viggo Brunschen Methode. J. Reine Angew. Math. 168 (1932), 106–116. | MR 1581360 | Zbl 0005.15303

[47] T. Estermann, On Goldbach’s problem: Proof that almost all even positive integers are sums of two primes. Proc. London Math. Soc. (2) 44 (1938), 307–314. | JFM 64.0126.05 | MR 1576891

[48] É. Fouvry, F. Grupp, On the switching principle in sieve theory. J. Reine Angew. Math. 370 (1986), 101–126. | MR 852513 | Zbl 0588.10051

[49] P.-H. Fuss, Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIéme siécle. St. Pétersbourg, 1843. [Reprint: Johnson Reprint Co. 1968.] | MR 225627 | Zbl 0155.00702

[50] P. X. Gallagher, A large sieve density estimate near σ=1. Invent. Math. 11 (1970), 329–339. | MR 279049 | Zbl 0219.10048

[51] P. X. Gallagher, Primes and powers of 2. Invent. Math. 29 (1975), 125–142. | MR 379410 | Zbl 0305.10044

[52] D. A. Goldston, On Hardy and Littlewood’s contribution to the Goldbach conjecture, in: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989). 115–155, Univ. Salerno, Salerno, 1992. | MR 1220461 | Zbl 0792.11039

[53] D. A. Goldston, Y. Motohashi, J. Pintz, C. Y. Yıldırım, Small gaps between primes exist. Proc. Japan Acad. 82A (2006), 61–65. | MR 2222213 | Zbl 1168.11041 | Zbl pre05123005

[54] D. A. Goldston, J. Pintz, C. Yıldırım, Primes in Tuples. Annals of Math. (200?), to appear, AIM Preprint Series, No. 2005-19, http://aimath.org/preprints.html | Zbl 1207.11096

[55] D. A. Goldston, J. Pintz, C. Yıldırım, Primes in Tuples II. Acta Math. (200??), to appear, preprint at arXiv:0710.2728 | MR 2600432 | Zbl 1207.11097

[56] D. A. Goldston, J. Pintz, C. Yıldırım, Primes in Tuples III: On the difference p n+ν -p n . Funct. Approx. Comment. Math. 35 (2006), 79–89. | MR 2271608 | Zbl 1196.11123 | Zbl pre05135166

[57] D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yıldırım, Small gaps between products of two primes. Proc. London Math. Soc. (200?), to appear, preprint at arXiv:math/0609615 | Zbl 1213.11171 | Zbl pre05551831

[58] D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yıldırım, Small gaps between almost primes, the parity problem, and some conjectures of Erdős. (200??), Preprint at arXiv: 0803.2636

[59] A. Granville, Unexpected irregularities in the distribution of prime numbers, in: Proceedings of the International Congress of Mathematicians (Zürich, 1994). Vol. 1, 2, 388–399, Birkhäuser, Basel, 1995. | MR 1403939 | Zbl 0843.11043

[60] A. Granville, Harald Cramér and the Distribution of Prime Numbers. Scand. Actuarial J. No. 1 (1995), 12–28. | MR 1349149 | Zbl 0833.01018

[61] G. Greaves, Sieves in Number Theory. Springer, 2001. | MR 1836967 | Zbl 1003.11044

[62] J. Hadamard, Sur les zéros de la fonction ζ(s) de Riemann. Comptes Rendus Acad. Sci. Paris 122 (1896), 1470–1473. | JFM 27.0154.02

[63] J. Hadamard, Sur la fonction ζ(s). Comptes Rendus Acad. Sci. Paris 123 (1896), p. 93. | JFM 27.0155.01

[64] J. Hadamard, Sur la distribution des zéros de la fonction ζ(s) et ses conséquances arithmétiques. Bull. Soc. Math. France 24 (1896), 199–220. | JFM 27.0154.01 | Numdam | MR 1504264

[65] G. H. Hardy, J. E. Littlewood, Some problems of ‘Partitio Numerorum’, III: On the expression of a number as a sum of primes. Acta Math. 44 (1923), 1–70. | JFM 48.0143.04 | MR 1555183

[66] G. H. Hardy, J. E. Littlewood, Some problems of ’Partitio Numerorum’, V: A further contribution to the study of Goldbach’s problem. Proc. London Math. Soc. (2) 22 (1924), 46–56. | JFM 49.0127.03 | MR 1575721

[67] G. Harman, Primes in short intervals. Math. Zeitschr. 180 (1982), 335–348. | MR 664519 | Zbl 0482.10040

[68] G. Harman, On the distribution of p modulo one. Mathematika 30 (1983), 104–116. | MR 720954 | Zbl 0504.10019

[69] D. R. Heath-Brown, A parity problem from sieve theory. Mathematika 29 (1982), 1–6. | MR 673500 | Zbl 0475.10035

[70] D. R. Heath-Brown, Prime twins and Siegel zeros. Proc. London Math. Soc. (3) 47 (1983), 193–224. | MR 703977 | Zbl 0517.10044

[71] D. R. Heath-Brown, The divisor function at consecutive integers. Mathematika 31 (1984), 141–149. | MR 762186 | Zbl 0529.10040

[72] D. R. Heath-Brown, Almost-prime k-tuples. Mathematika 44 (1997), 245–266. | MR 1600529 | Zbl 0886.11052

[73] D. R. Heath-Brown, H. Iwaniec, On the difference between consecutive prime numbers. Invent. Math. 55 (1979), 49–69. | MR 553995 | Zbl 0424.10028

[74] D. R. Heath-Brown, J.-C. Puchta, Integers represented as a sum of primes and powers of two. Asian J. Math. 6 (2002), no. 3, 535–565. | MR 1946346 | Zbl 1097.11050

[75] H. Heilbronn, E. Landau, P. Scherk, Alle großen ganzen Zahlen lassen sich als Summe von höchstens 71 Primzahlen darstellen. Časopis pěst. Math. Fys. 65 (1936), 117–141. [E. Landau, Collected Works, 9, 351–375, Thales Verlag; The Collected Papers of Hans Arnold Heilbronn, 197–211, J. Wiley 1988.] | JFM 62.0151.04 | Zbl 0013.19902

[76] A. J. Hildebrand, Erdős’ problems on consecutive integers, Paul Erdős and his Mathematics I. Bolyai Society Mathematical Studies 11, Budapest, 2002, 305–317. | MR 1954699 | Zbl 1046.11071

[77] D. Hilbert, Gesammelte Abhandlungen. Vol. 3, 290–329, Springer, Berlin, 1935. | Zbl 0013.05604

[78] G. Hoheisel, Primzahlprobleme in der Analysis. SBer. Preuss. Akad. Wiss., Berlin, 1930, 580–588. | JFM 56.0172.02

[79] C. Hooley, On the greatest prime factor of a quadratic polynomial. Acta Math. 117 (1967), 281–299. | MR 204383 | Zbl 0146.05704

[80] M. N. Huxley, On the differences of primes in arithmetical progressions. Acta Arith. 15 (1968/69), 367–392. | MR 244177 | Zbl 0186.36402

[81] M. N. Huxley, On the difference between consecutive primes. Invent math. 15 (1972), 164–170. | MR 292774 | Zbl 0241.10026

[82] M. N. Huxley, Small differences between consecutive primes. Mathematika 20 (1973), 229–232. | MR 352021 | Zbl 0287.10029

[83] M. N. Huxley, Small differences between consecutive primes II. Mathematika 24 (1977), 142–152. | MR 466042 | Zbl 0367.10038

[84] M. N. Huxley, An application of the Fouvry–Iwaniec theorem. Acta Arith. 43 (1984), 441–443. | MR 756293 | Zbl 0542.10036

[85] A. E. Ingham, On the difference between consecutive primes. Quart. J. Math. Oxford ser. 8 (1937), 255–266. | JFM 63.0903.04

[86] H. Iwaniec, Almost primes represented by quadratic polynomials. Invent. math. 47 (1978), 171–188. | MR 485740 | Zbl 0389.10031

[87] H. Iwaniec, M. Jutila, Primes in short intervals. Arkiv Mat. 17 (1979), 167–176. | MR 543511 | Zbl 0408.10029

[88] H. Iwaniec, J. Pintz, Primes in short intervals. Monatsh. Math. 98 (1984), 115–143. | MR 776350 | Zbl 0544.10040

[89] Chaohua Jia, Difference between consecutive primes. Sci. China Ser. A 38 (1995a), 1163–1186. | MR 1373392 | Zbl 0844.11057

[90] Chaohua Jia, Goldbach numbers in a short interval, I. Science in China 38 (1995b), 385–406. | MR 1350242 | Zbl 0831.11052

[91] Chaohua Jia, Goldbach numbers in a short interval, II. Science in China 38 (1995c), 513–523. | MR 1350247 | Zbl 0831.11053

[92] Chaohua Jia, Almost all short intervals containing prime numbers. Acta Arith. 76 (1996a), 21–84. | MR 1390568 | Zbl 0841.11043

[93] Chaohua Jia, On the exceptional set of Goldbach numbers in a short interval. Acta Arith. 77 (1996b), no. 3, 207–287. | MR 1410337 | Zbl 0863.11066

[94] Chaohua Jia, Ming-Chit Liu, On the largest prime factor of integers. Acta Arith. 95 (2000), No. 1, 17–48. | MR 1787203 | Zbl 1161.11384

[95] M. Jutila, On numbers with a large prime factor, I. J. Indian Math. Soc. (N.S.) 37 (1973), 43–53. | MR 360488 | Zbl 0293.10023

[96] M. Jutila, On Linnik’s constant. Math. Scand. 41 (1977), 45–62. | MR 476671 | Zbl 0363.10026

[97] L. Kaniecki, On Šnirelman’s constant under the Riemann hypothesis. Acta Arith. 72 (1995), 361–374. | MR 1348203 | Zbl 0846.11058

[98] J. Kaczorowski, A. Perelli, J. Pintz, A note on the exceptional set for Goldbach’s problem in short intervals. Monatsh. Math. 116, no. 3-4 (1995), 275–282. Corrigendum: ibid. 119 (1995), 215–216. | MR 1320679 | Zbl 0836.11034

[99] I. Kátai, A remark on a paper of Ju. V. Linnik. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 99–100. | MR 214558 | Zbl 0145.04905

[100] R. M. Kaufman, The distribution of {p}. Mat. Zametki 26 (1979), 497–504 (Russian). | MR 552712 | Zbl 0417.10030

[101] N. I. Klimov, On the computation of Šnirelman’s constant. Volžskij Mat. Sbornik 7 (1969), 32–40 (Russian). | MR 289443

[102] N. I. Klimov, A refinement of the estimate of the absolute constant in the Goldbach–Šnirelman problem, in: Number theory: Collection of Studies in Additive Number Theory. Naučn. Trudy Kuibyšev. Gos. Ped. Inst. 158 (1975), 14–30 (Russian). | MR 567690

[103] N. I. Klimov, A new estimate of the absolute constant in the Goldbach–Šnirelman problem. Izv. VUZ no. 1 (1978), 25–35 (Russian). | MR 497572 | Zbl 0392.10047

[104] N. I. Klimov, G. Z. Pilt’ai, T. A. Šeptickaja, An estimate for the absolute constant in the Goldbach–Šnirelman problem. Issled. po teorii čisel, Saratov No. 4 (1972), 35–51 (Russian). | MR 414506 | Zbl 0251.10038

[105] S. Knapowski, On the mean values of certain functions in prime number theory. Acta Math. Acad. Sci. Hungar. 10 (1959), 375–390. | MR 111722 | Zbl 0093.25804

[106] H. von Koch, Sur la distribution des nombres premiers. Acta Math. 24 (1901), 159–182. | JFM 31.0201.02 | MR 1554926

[107] L. Kronecker, Vorlesungen über Zahlentheorie, I. p. 68, Teubner, Leipzig, 1901. | Zbl 0394.10002

[108] P. Kuhn, Zur Vigo Brun’schen Siebmethode I. Norske Vid. Selsk. 14 (1941), 145–148. | JFM 67.0128.02 | MR 20101 | Zbl 0028.20601

[109] P. Kuhn, Neue Abschätzungen auf Grund der Viggo Brunschen Siebmethode. 12. Skand. Mat. Kongr. (1953), 160–168. | MR 67147 | Zbl 0058.27505

[110] P. Kuhn, Über die Primteiler eines Polynoms. Proc. ICM Amsterdam 2 (1954), 35–37.

[111] E. Landau, Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Riemannschen Zetafunktion. Jahresber. Deutsche Math. Ver. 21 (1912), 208–228. [Proc. 5th Internat. Congress of Math., I, 93–108, Cambridge 1913; Collected Works, 5, 240–255, Thales Verlag.] | JFM 43.0264.01

[112] A. Languasco, On the exceptional set of Goldbach’s problem in short intervals. Mh. Math. 141 (2004), 147–169. | MR 2037990 | Zbl 1059.11059

[113] A. Languasco, J. Pintz, A. Zaccagnini, On the sum of two primes and k powers of two. Bull. London Math. Soc. 39 (2007), no. 5,  771–780. | MR 2365226 | Zbl 1137.11066

[114] Hong Ze Li, Goldbach numbers in short intervals. Science in China 38 (1995), 641–652. | MR 1351230 | Zbl 0831.11054

[115] Hong Ze Li, Primes in short intervals. Math. Proc. Cambridge Philos. Soc. 122 (1997), 193–205. | MR 1458226 | Zbl 1156.11335

[116] Hong Ze Li, The exceptional set of Goldbach numbers. Quart. J. Math. Oxford Ser. (2) 50, no. 200 (1999), 471–482. | MR 1726788 | Zbl 0937.11046

[117] Hong Ze Li, The exceptional set of Goldbach numbers, II. Acta Arith. 92, no. 1 (2000a), 71–88. | MR 1739736 | Zbl 0963.11057

[118] Hong Ze Li, The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes. Acta Arith. 92 (2000b), 229–237. | MR 1752027 | Zbl 0952.11022

[119] Hong Ze Li, The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes, II. Acta Arith. 96 (2001), 369–379. | MR 1811879 | Zbl 0973.11088

[120] Yu. V. Linnik, Prime numbers and powers of two. Trudy Mat. Inst. Steklov. 38 (1951), 152–169 (Russian). | MR 50618 | Zbl 0049.31402

[121] Yu. V. Linnik, Some conditional theorems concerning the binary Goldbach problem. Izv. Akad. Nauk. SSSR 16 (1952), 503–520. | MR 53961 | Zbl 0049.03104

[122] Yu. V. Linnik, Addition of prime numbers and powers of one and the same number. Mat. Sb. (N.S.) 32 (1953), 3–60 (Russian). | MR 59938 | Zbl 0051.03402

[123] J. Y. Liu, M. C. Liu, T. Z. Wang, The number of powers of 2 in a representation of large even integers, I. Sci. China Ser. A 41 (1998a), 386–397. | MR 1663182 | Zbl 1029.11049

[124] J. Y. Liu, M. C. Liu, T. Z. Wang, The number of powers of 2 in a representation of large even integers, II. Sci. China Ser. A 41 (1998b), 1255–1271. | MR 1681935 | Zbl 0924.11086

[125] J. Y. Liu, M. C. Liu, T. Z. Wang, On the almost Goldbach problem of Linnik. J. Théor. Nombres Bordeaux 11 (1999), 133–147. | Numdam | MR 1730436 | Zbl 0979.11051

[126] Hong-Quan Liu, Jie Wu, Numbers with a large prime factor. Acta Arith. 89, no. 2 (1999), 163–187. | MR 1691896 | Zbl 0937.11038

[127] S. T. Lou, Q. Yao, A Chebychev’s type of prime number theorem in a short interval, II. Hardy–Ramanujan J. 15 (1992), 1–33. | MR 1215589 | Zbl 0780.11039

[128] S. T. Lou, Q. Yao, The number of primes in a short interval. Hardy–Ramanujan J. 16 (1993), 21–43. | MR 1216725 | Zbl 0777.11032

[129] H. Maier, Small differences between prime numbers. Michigan Math. J. 35 (1988), 323–344. | MR 978303 | Zbl 0671.10037

[130] H. Maier, C. Pomerance, Unusually large gaps between consecutive primes. Trans. Amer. Math. Soc. 322 (1990), 201–237. | MR 972703 | Zbl 0706.11052

[131] E. Maillet, L’intermédiaire des math. 12 (1905), p. 108.

[132] H. Mikawa, On the exceptional set in Goldbach’s problem. Tsukuba J. Math. 16 (1992), 513–543. | MR 1200444 | Zbl 0778.11054

[133] H. Mikawa, On the intervals between consecutive numbers that are sums of two primes. Tsukuba J. Math. 17, No. 2 (1993), 443–453. | MR 1255482 | Zbl 0798.11040

[134] H. L. Montgomery, Zeros of L-functions. Invent. math. 8 (1969), 346–354. | MR 249375 | Zbl 0204.37401

[135] H. L. Montgomery, R. C. Vaughan, The exceptional set in Goldbach’s problem. Acta Arith. 27 (1975), 353–370. | MR 374063 | Zbl 0301.10043

[136] C. J. Mozzochi, On the difference between consecutive primes. J. Number Th. 24 (1986), 181–187. | MR 863653 | Zbl 0599.10033

[137] W. Narkiewicz, The Development of Prime Number Theory. From Euclid to Hardy and Littlewood. Springer, 2000. | MR 1756780 | Zbl 0942.11002

[138] Cheng Dong Pan On the representation of even numbers as the sum of a prime and a near prime. Sci. Sinica 11 (1962), 873–888 (Russian). | MR 151442

[139] Cheng Dong Pan On the representation of even numbers as the sum of a prime and a product of not more than 4 primes. Sci. Sinica 12 (1963), 455–473. | MR 156830

[140] A. Perelli, J. Pintz, On the exceptional set for the 2k-twin primes problem. Compositio Math. 82, no. 3 (1992), 355–372. | Numdam | MR 1163220 | Zbl 0756.11028

[141] A. Perelli, J. Pintz, On the exceptional set for Goldbach’s problem in short intervals. J. London Math. Soc. (2) 47 (1993), 41–49. | MR 1200976 | Zbl 0806.11042

[142] G. Z. Pilt’ai, On the size of the difference between consecutive primes. Issledovania po teorii chisel, 4 (1972), 73–79. | MR 392867 | Zbl 0249.10038

[143] Ch. G. Pinner, Repeated values of the divisor function. Quart. J. Math. Oxford Ser. (2) 48, no. 192 (1997), 499–502. | MR 1604835 | Zbl 0890.11028

[144] J. Pintz, On the remainder term of the prime number formula I. On a problem of Littlewood. Acta Arith. 36 (1980a), 341–365. | MR 585891 | Zbl 0439.10028

[145] J. Pintz, On the remainder term of the prime number formula V. Effective mean value theorems. Studia Sci. Math. Hungar. 15 (1980b), 215–223. | MR 681441 | Zbl 0469.10017

[146] J. Pintz, On the remainder term of the prime number formula VI. Ineffective mean value theorems. Studia Sci. Math. Hungar. 15 (1980c), 225–230. | MR 681442 | Zbl 0469.10018

[147] J. Pintz, On primes in short intervals, I. Studia Sci. Math. Hungar. 16 (1981), 395–414. | MR 729303 | Zbl 0469.10013

[148] J. Pintz, On primes in short intervals, II. Studia Sci. Math. Hungar. 19 (1984), 89–96. | MR 787789 | Zbl 0573.10029

[149] J. Pintz, Very large gaps between consecutive primes. J. Number Th. 63 (1997), 286–301. | MR 1443763 | Zbl 0870.11056

[150] J. Pintz, Recent Results on the Goldbach Conjecture, in: Elementare und Analytische Zahlentheorie (Tagungsband). Proceedings ELAZ-Conference, May 24–28, 2004, Steiner Verlag, Stuttgart, 2006, pp. 220–254. | MR 2310184 | Zbl 1177.11087 | Zbl pre05149033

[151] J. Pintz, Cramér vs. Cramér. On Cramér’s probabilistic model for primes. Funct. Approx. Comment. Math. 37 (2007), part 2, 361–376. | MR 2363833 | Zbl 1226.11096 | Zbl pre05257405

[152] J. Pintz, I. Z. Ruzsa, On Linnik’s approximation to Goldbach’s problem, I. Acta Arith. 109 (2003), no. 2, 169–194. | MR 1980645 | Zbl 1031.11060

[153] J. Pintz, I. Z. Ruzsa, On Linnik’s approximation to Goldbach’s problem, II. Manuscript (200?).

[154] A. de Polignac, Six propositions arithmologiques sur les nombres premiers. Nouv. Ann. Math. 8 (1849), 423–429.

[155] G. Pólya, Heuristic reasoning in the theory of numbers. Amer. Math. Monthly 66 (1959), 375–384. | MR 104639 | Zbl 0092.04901

[156] H. Rademacher, Beiträge zur Viggo Brunschen Methode in der Zahlentheorie. Abh. Math. Sem. Hamburg 3, 12–30. [Collected Papers 1 (1924), 259–277, MIT Press, 1974.] | JFM 49.0128.05

[157] K. Ramachandra, A note on numbers with a large prime factor. J. London Math. Soc. (2) 1 (1969), 303–306. | MR 246849 | Zbl 0179.07301

[158] K. Ramachandra, On the number of Goldbach numbers in small intervals. J. Indian Math. Soc. (N.S.) 37 (1973), 157–170. | MR 360493 | Zbl 0326.10041

[159] O. Ramaré, On Šnirel’man’s constant. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 22 (1995), 645–706. | Numdam | MR 1375315 | Zbl 0851.11057

[160] R. A. Rankin, The difference between consecutive prime numbers. J. London Math. Soc. 13 (1938), 242–244. | JFM 64.0982.01

[161] R. A. Rankin, The difference between consecutive prime numbers. II. Proc. Cambridge Philos. Soc. 36 (1940), 255–266. | JFM 66.0163.01 | MR 1760

[162] R. A. Rankin, The difference between consecutive prime numbers, V. Proc. Edinburgh Math. Soc. (2) 13 (1962/63), 331–332. | MR 160767 | Zbl 0121.04705

[163] A. Rényi, On the representation of an even number as the sum of a single prime and a single almost-prime number. Doklady Akad. Nauk SSSR 56 (1947), 455–458 (Russian). | MR 21958 | Zbl 0030.34501

[164] A. Rényi, On the representation of an even number as the sum of a single prime and a single almost-prime number. Izv. Akad. Nauk SSSR 12 (1948), 57–78 (Russian). | MR 23863 | Zbl 0038.18601

[165] Sz. Gy. Révész, Effective oscillation theorems for a general class of real-valued remainder terms. Acta Arith. 49 (1988), 481–505. | MR 967333 | Zbl 0587.10022

[166] G. Ricci, Su la congettura di Goldbach e la costante di Schnirelmann. Boll. Un. Math. Ital. 15 (1936), 183–187. | Zbl 0015.20101

[167] G. Ricci, Su la congettura di Goldbach e la costante di Schnirelmann, II, III. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (2) 6 (1937), 71–90, 91–116. | JFM 63.0900.04 | Numdam | MR 1556785

[168] G. Ricci, La differenza di numeri primi consecutivi. Rendiconti Sem. Mat. Univ. e Politecnico Torino 11, 149–200. Corr. ibidem 12 (1952), p. 315. | MR 53149 | Zbl 0048.27704

[169] G. Ricci, Sull’andamento della differenza di numeri primi consecutivi. Riv. Mat. Univ. Parma 5 (1954), 3–54. | MR 67139 | Zbl 0058.27602

[170] H. Riesel, R. C. Vaughan, On sums of primes. Arkiv Mat. 21 (1983), 45–74. | MR 706639 | Zbl 0516.10044

[171] L. Ripert, L’Intermédiaire des Math. 10 (1903), p. 66.

[172] N. P. Romanov, On Goldbach’s problem. Tomsk, Izv. Mat. Tek. I (1935),34–38 (Russian). | Zbl 0017.00501

[173] A. A. Šanin, Determination of constants in the method of Brun–Šnirelman. Volzh. Mat. Sb. 2 (1964), 261–265 (Russian). | MR 194407 | Zbl 0254.10045

[174] Y. Saouter, Checking the odd Goldbach conjecture up to 10 20 . Math. Comp. 67 (1998), 863–866. | MR 1451327 | Zbl 0913.11044

[175] A. Schinzel, W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4 (1958), 185–208; Erratum: ibidem 5 p. 259. Erratum: ibidem 5, p. 259. | MR 106202 | Zbl 0082.25802

[176] J.-C. Schlage-Puchta, The equation ω(n)=ω(n+1). Mathematika 50 (2003), no. 1-2, 99–101 (2005). | MR 2136354 | Zbl 1088.11071

[177] L. G. Schnirelman, On additive properties of numbers. Izv. Donsk. Politehn. Inst. 14 (1930), 3–28 (Russian).

[178] L. G. Schnirelman, Über additive Eigenschaften von Zahlen. Math. Ann. 107 (1933), 649–690. | MR 1512821 | Zbl 0006.10402

[179] A. Selberg, The general sieve method and its place in prime number theory. Proc. Internat. Congress of Math., Cambridge, Mass. 1 (1950), 286–292. | MR 44563 | Zbl 0049.31105

[180] A. Selberg, Collected Papers, Vol. II. Springer, Berlin, 1991. | MR 1295844 | Zbl 1302.11001 | Zbl 0729.11001

[181] C. L. Siegel, Über die Klassenzahl quadratischer Körper. Acta Arith. 1, 83–86. [Gesammelte Abhandlungen 1 (1936), 406–409, Springer, Berlin–Heidelberg, 1966.] | JFM 61.0170.02 | Zbl 0011.00903

[182] C. Spiro, Thesis. Urbana, 1981.

[183] J. J. Sylvester, On the partition of an even number into two primes. Proc. London Math. Soc. 4 (1871), 4–6. [Collected Math. Papers, 2, 709–711, Cambridge, 1908.] | JFM 04.0077.04

[184] W. Tartakowski, Sur quelques sommes du type de Viggo Brun. C. R. Acad. Sci. URSS, N.S. 23 (1939a), 121–125. | JFM 65.1152.04

[185] W. Tartakowski, La méthode du crible approximatif “électif”. C. R. Acad. Sci. URSS, N. S. 23 (1939b), 126–129. | JFM 65.1152.05

[186] P. Turán, On the remainder term of the prime number formula I. Acta Math. Hungar. 1 (1950), 48–63. | MR 43121 | Zbl 0040.01601

[187] S. Uchiyama, On the difference between consecutive prime numbers. Acta Arith. 27 (1975), 153–157. | MR 366839 | Zbl 0301.10037

[188] C. J. de la Vallée-Poussin, Recherches analytiques sur la théorie des nombres premiers, I–III. Ann. Soc. Sci. Bruxelles 20 (1896), 183–256, 281–362, 363–397. | JFM 27.0155.03

[189] C. J. de la Vallée-Poussin, Sur la fonction ζ(s) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée. Mem Couronnés de l’Acad. Roy. Sci. Bruxelles, 59 (1899). | JFM 30.0193.03

[190] R. C. Vaughan, On Goldbach’s problem. Acta Arith. 22 (1972), 21–48. | MR 327703 | Zbl 0216.31603

[191] R. C. Vaughan, On the estimation of Schnirelman’s constant. J. Reine Angew. Math. 290 (1977), 93–108. | MR 437478 | Zbl 0344.10028

[192] I. M. Vinogradov, Representation of an odd number as a sum of three prime numbers. Doklady Akad. Nauk. SSSR 15 (1937), 291–294 (Russian). | JFM 63.0131.04

[193] I. M. Vinogradov, A certain general property of the distribution of prime numbers. Mat. Sb. 7 (1940), 365–372 (Russian). | JFM 66.0163.02 | MR 2361 | Zbl 0024.01503

[194] A. I. Vinogradov, Application of Riemann’s ζ(s) to the Eratosthenian sieve. Mat. Sb. 41 (1957), 49–80; Corr.: ibidem, 415–416 (Russian). | MR 97367 | Zbl 0079.27205 | Zbl 0079.27206

[195] A. I. Vinogradov, The density hypothesis for Dirichlet L-series. Izv. Akad. Nauk. SSSR 29 (1965), 903–934 (Russian). Corr.: ibidem, 30 (1966), 719–720. | MR 197414 | Zbl 0128.04205

[196] I. M. Vinogradov, Special Variants of the Method of Trigonometric Sums. Nauka, Moskva, 1976 (Russian). | MR 469878 | Zbl 0429.10023

[197] Tianze Wang, On Linnik’s almost Goldbach theorem. Sci. China Ser. A 42 (1999), 1155–1172. | MR 1749863 | Zbl 0978.11054

[198] Yuan Wang, On the representation of a large even integer as a sum of a product of at most 3 primes and a product of at most 4 primes. Acta Math. Sin. 6 (1956), 500–513 (Chinese). | MR 98068 | Zbl 0068.26801

[199] Yuan Wang, On sieve methods and some of their applications, I. Acta Math. Sinica 8 (1958), 413–429 (Chinese). [English translation: Sci. Sinica 8 (1959), 357–381.] | MR 103175 | Zbl 0084.27103 | Zbl 0136.33201

[200] Yuan Wang, Sheng-gang Xie, Kunrin Yu, Remarks on the difference of consecutive primes. Sci. Sinica 14 (1965), 786–788. | MR 188178 | Zbl 0149.29003

[201] E. Waring, Meditationes Algebraicae. Cantabrigine. 1770. [3rd. ed. 1782; English translation: American Math. Soc., Providence, 1991.] | MR 1146921

[202] N. Watt, Short intervals almost all containing primes. Acta Arith. 72 (1995), 131–167. | MR 1347260 | Zbl 0832.11030

[203] E. Westzynthius, Über die Verteilung der Zahlen, die zu der n ersten Primzahlen teilerfremd sind. Comm. Phys. Math. Helsingfors (5) 25 (1931), 1–37. | JFM 57.0186.02 | Zbl 0003.24601

[204] M. Y. Zhang, P. Ding, An improvement to the Schnirelman constant. J. China Univ. Sci. Techn. 13 (1983), Math. Issue, 31–53. | MR 725434