On Gelfond’s conjecture about the sum of digits of prime numbers
Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 2, p. 415-422

The goal of this paper is to outline the proof of a conjecture of Gelfond [6] (1968) in a recent work in collaboration with Christian Mauduit [11] concerning the sum of digits of prime numbers, reflecting the lecture given in Edinburgh at the Journées Arithmétiques 2007.

Dans cet article nous exposons les étapes importantes de la preuve de la conjecture de Gelfond [6] (1968) dans un travail récent en collaboration avec Christian Mauduit [11] concernant la somme des chiffres des nombres premiers, dans l’esprit de l’exposé donné à Edimbourg dans le cadre des Journées Arithmétiques 2007.

@article{JTNB_2009__21_2_415_0,
     author = {Rivat, Jo\"el},
     title = {On Gelfond's conjecture about the sum of digits of prime numbers},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux 1},
     volume = {21},
     number = {2},
     year = {2009},
     pages = {415-422},
     doi = {10.5802/jtnb.678},
     mrnumber = {2541433},
     zbl = {pre05620658},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2009__21_2_415_0}
}
Rivat, Joël. On Gelfond’s conjecture about the sum of digits of prime numbers. Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 2, pp. 415-422. doi : 10.5802/jtnb.678. http://www.numdam.org/item/JTNB_2009__21_2_415_0/

[1] C. Dartyge and G. Tenenbaum, Sommes des chiffres de multiples d’entiers. Ann. Inst. Fourier (Grenoble) 55 (2005), 2423–2474. | Numdam | MR 2207389 | Zbl 1110.11025

[2] E. Fouvry and C. Mauduit, Sommes des chiffres et nombres presques premiers. Mathematische Annalen 305 (1996), 571–599. | MR 1397437 | Zbl 0858.11050

[3] E. Fouvry and C. Mauduit, Méthodes de crible et fonctions sommes des chiffres. Acta Arithmetica 77 (1996), 339–351. | MR 1414514 | Zbl 0869.11073

[4] J. Friedlander and H. Iwaniec, The polynomial X 2 +Y 4 captures its primes. Ann. of Math. (2) 148 (1998), 945–1040. | MR 1670065 | Zbl 0926.11068

[5] J. Friedlander and H. Iwaniec, Asymptotic sieve for primes. Ann. of Math. (2) 148 (1998), 1041–1065. | MR 1670069 | Zbl 0926.11067

[6] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arithmetica 13 (1968), 259–265. | MR 220693 | Zbl 0155.09003

[7] G. Harman, Primes with preassigned digits. Acta Arith. 125 (2006), 179–185. | MR 2277847 | Zbl pre05082231

[8] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math. 34 (1982), 1365–1377. | MR 678676 | Zbl 0478.10024

[9] D. R. Heath-Brown, Primes represented by x 3 +2y 3 . Acta Math. 186 (2001), 1–84. | MR 1828372 | Zbl 1007.11055

[10] K. Mahler, The Spectrum of an Array and Its Application to the Study of the Translation Properties of a Simple Class of Arithmetical Functions. II: On the Translation Properties of a Simple Class of Arithmetical Functions. J. of Math. Phys. Mass. Inst. Techn. 6 (1927), 158–163.

[11] C. Mauduit, J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers. Annals of Mathematics, à paraître.

[12] I. I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form [f(n)]. Mat. Sbornik N.S. 33(75) (1953), 559–566. | MR 59302 | Zbl 0053.02702

[13] W. Sierpiński, Sur les nombres premiers ayant des chiffres initiaux et finals donnés. Acta Arith. 5 (1959), 265–266. | MR 109811 | Zbl 0094.25505

[14] R. C. Vaughan, An elementary method in prime number theory. Acta Arithmetica 37 (1980), 111–115. | MR 598869 | Zbl 0448.10037

[15] I. M. Vinogradov, The method of Trigonometrical Sums in the Theory of Numbers, translated from the Russian, revised and annotated by K.F. Roth and A. Davenport. Interscience, London, 1954. | MR 2104806 | Zbl 0055.27504

[16] D. Wolke, Primes with preassigned digits. Acta Arith. 119 (2005), 201–209. | MR 2167722 | Zbl 1080.11064