Representation of finite abelian group elements by subsequence sums
Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 3, p. 559-587

Let $G\cong {C}_{{n}_{1}}\oplus ...\oplus {C}_{{n}_{r}}$ be a finite and nontrivial abelian group with ${n}_{1}|{n}_{2}|...|{n}_{r}$. A conjecture of Hamidoune says that if $W={w}_{1}·...·{w}_{n}$ is a sequence of integers, all but at most one relatively prime to $|G|$, and $S$ is a sequence over $G$ with $|S|\ge |W|+|G|-1\ge |G|+1$, the maximum multiplicity of $S$ at most $|W|$, and $\sigma \left(W\right)\equiv 0\phantom{\rule{3.33333pt}{0ex}}mod\phantom{\rule{0.277778em}{0ex}}|G|$, then there exists a nontrivial subgroup $H$ such that every element $g\in H$ can be represented as a weighted subsequence sum of the form $g=\underset{i=1}{\sum ^{n}}{w}_{i}{s}_{i}$, with ${s}_{1}·...·{s}_{n}$ a subsequence of $S$. We give two examples showing this does not hold in general, and characterize the counterexamples for large $|W|\ge \frac{1}{2}|G|$.

A theorem of Gao, generalizing an older result of Olson, says that if $G$ is a finite abelian group, and $S$ is a sequence over $G$ with $|S|\ge |G|+𝔻\left(G\right)-1$, then either every element of $G$ can be represented as a $|G|$-term subsequence sum from $S$, or there exists a coset $g+H$ such that all but at most $|G/H|-2$ terms of $S$ are from $g+H$. We establish some very special cases in a weighted analog of this theorem conjectured by Ordaz and Quiroz, and some partial conclusions in the remaining cases, which imply a recent result of Ordaz and Quiroz. This is done, in part, by extending a weighted setpartition theorem of Grynkiewicz, which we then use to also improve the previously mentioned result of Gao by showing that the hypothesis $|S|\ge |G|+𝔻\left(G\right)-1$ can be relaxed to $|S|\ge |G|+{\mathsf{d}}^{*}\left(G\right)$, where ${\mathsf{d}}^{*}\left(G\right)=\underset{i=1}{\sum ^{r}}\left({n}_{i}-1\right)$. We also use this method to derive a variation on Hamidoune’s conjecture valid when at least ${\mathsf{d}}^{*}\left(G\right)$ of the ${w}_{i}$ are relatively prime to $|G|$.

Soit $G\cong {C}_{{n}_{1}}\oplus ...\oplus {C}_{{n}_{r}}$ un groupe abélien fini non trivial avec ${n}_{1}|{n}_{2}|...|{n}_{r}$. Une conjecture d’Hamidoune dit que si $W={w}_{1}·...·{w}_{n}$ est une suite d’entiers, tous, sauf au plus un, premiers à $|G|$, et $S$ une suite d’éléments de $G$ avec $|S|\ge |W|+|G|-1\ge |G|+1$, la multiplicité maximale de $S$ au plus $|W|$, et $\sigma \left(W\right)\equiv 0\phantom{\rule{3.33333pt}{0ex}}mod\phantom{\rule{0.277778em}{0ex}}|G|$, alors il existe un sous-groupe non trivial $H$ tel que tout élément $g\in H$ peut être représenté par une somme pondérée de la forme $g=\underset{i=1}{\sum ^{n}}{w}_{i}{s}_{i}$, avec ${s}_{1}·...·{s}_{n}$ une sous-suite de $S$. Nous donnons deux exemples qui montrent que cela n’est pas vrai en général, et nous caractérisons les contre-exemples pour les grands $|W|\ge \frac{1}{2}|G|$.

Un théorème de Gao, généralisant un résultat plus ancien d’Olson, dit que si $G$ est un groupe abélien fini, et $S$ une suite d’éléments de $G$ avec $|S|\ge |G|+𝔻\left(G\right)-1$, alors, soit tout élément de $G$ peut être représenté par une sous-somme de $S$ à $|G|$ termes, soit il existe une classe $g+H$ telle que tous sauf au plus $|G/H|-2$ termes de $S$ sont dans $g+H$. Nous établissons quelques cas très spéciaux d’un analogue pondéré de ce théorème, conjecturé par Ordaz et Quiroz, et quelques conclusions partielles dans les autres cas, qui impliquent un résultat récent d’Ordaz et Quiroz. Cela est fait, en partie, en étendant un théorème de Grynkiewicz sur les partitions pondérées, que nous utilisons également pour améliorer le résultat de Gao cité précédemment en montrant que l’hypothèse $|S|\ge |G|+𝔻\left(G\right)-1$ peut être affaiblie en $|S|\ge |G|+{\mathsf{d}}^{*}\left(G\right)$, où ${\mathsf{d}}^{*}\left(G\right)=\underset{i=1}{\sum ^{r}}\left({n}_{i}-1\right)$. Nous utilisons aussi cette méthode pour déduire une variante de la conjecture d’Hamidoune valide si au moins ${\mathsf{d}}^{*}\left(G\right)$ des ${w}_{i}$ sont premiers à $|G|$.

DOI : https://doi.org/10.5802/jtnb.689
Classification:  11B75,  20K01
Keywords: zero-sum problem, Davenport constant, weighted subsequence sums, setpartition, ${\mathsf{d}}^{*}\left(G\right)$
@article{JTNB_2009__21_3_559_0,
author = {Grynkiewicz, David J. and Marchan, Luz E. and Ordaz, Oscar},
title = {Representation of finite abelian group elements by subsequence sums},
journal = {Journal de th\'eorie des nombres de Bordeaux},
publisher = {Universit\'e Bordeaux 1},
volume = {21},
number = {3},
year = {2009},
pages = {559-587},
doi = {10.5802/jtnb.689},
mrnumber = {2605534},
zbl = {1214.11034},
language = {en},
url = {http://www.numdam.org/item/JTNB_2009__21_3_559_0}
}

Grynkiewicz, David J.; Marchan, Luz E.; Ordaz, Oscar. Representation of finite abelian group elements by subsequence sums. Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 3, pp. 559-587. doi : 10.5802/jtnb.689. http://www.numdam.org/item/JTNB_2009__21_3_559_0/

[1] Sukumar das Adhikari and Purusottam Rath, Davenport constant with weights and some related questions. Integers 6 (2006), A30, 6 pp (electronic). | MR 2264845 | Zbl 1107.11018

[2] Sukumar das Adhikari and Yong-Gao Chen, Davenport constant with weights and some related questions II. J. Combin. Theory Ser. A 115 (2008), no. 1, 178–184. | MR 2378862 | Zbl pre05232001

[3] N. Alon, A. Bialostocki and Y. Caro, The extremal cases in the Erdős-Ginzburg-Ziv Theorem. Unpublished.

[4] A. Bialostocki, P. Dierker, D. J. Grynkiewicz, and M. Lotspeich, On Some Developments of the Erdős-Ginzburg-Ziv Theorem II. Acta Arith. 110 (2003), no. 2, 173–184. | MR 2008084 | Zbl 1069.11007

[5] Y. Caro, Zero-sum problems—a survey. Discrete Math. 152 (1996), no. 1–3, 93–113. | MR 1388634 | Zbl 0856.05068

[6] P. Erdős, A. Ginzburg and A. Ziv, Theorem in Additive Number Theory. Bull. Res. Council Israel 10F (1961), 41–43. | Zbl 0063.00009

[7] W. Gao, Addition theorems for finite abelian groups. J. Number Theory 53 (1995), 241–246. | MR 1348762 | Zbl 0836.11007

[8] W. Gao and A. Geroldinger, On Long Minimal Zero Sequences in Finite Abelian Groups. Periodica Math. Hungar. 38 (1999), no. 3, 179–211. | MR 1756238 | Zbl 0980.11014

[9] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey. Expositiones Mathematicae, 24 (2006), no. 4, 337–369. | MR 2313123 | Zbl 1122.11013

[10] W. Gao and W. Jin, Weighted sums in finite cyclic groups. Discrete Math. 283 (2004), no. 1-3, 243–247. | MR 2061498 | Zbl 1052.11014

[11] A. Geroldinger and F. Halter-Koch, Non-unique factorizations: Algebraic, combinatorial and analytic theory. Pure and Applied Mathematics (Boca Raton) 278. Chapman & Hall/CRC, Boca Raton, FL, 2006. | MR 2194494 | Zbl 1113.11002

[12] A. Geroldinger and R. Schneider, On Davenport’s Constant. J. Combin. Theory, Ser. A 61 (1992), no. 1, 147–152. | MR 1178393 | Zbl 0759.20008

[13] S. Griffiths, The Erdős-Ginzberg-Ziv theorem with units. To appear in Discrete math. | MR 2459367 | Zbl pre05499821

[14] D. J. Grynkiewicz, A Weighted Erdős-Ginzburg-Ziv Theorem. Combinatorica 26 (2006), no. 4, 445–453. | MR 2260848 | Zbl 1121.11018

[15] D. J. Grynkiewicz, Quasi-periodic Decompositions and the Kemperman Structure Theorem, European J. Combin. 26 (2005), no. 5, 559–575. | MR 2126639 | Zbl 1116.11081

[16] D. J. Grynkiewicz, On a Partition Analog of the Cauchy-Davenport Theorem. Acta Math. Hungar. 107 (2005), no. 1–2, 161–174. | MR 2148942 | Zbl 1102.11016

[17] D. J. Grynkiewicz, On a conjecture of Hamidoune for subsequence sum., Integers 5 (2005), no. 2, A7, 11 pp. (electronic). | MR 2192085 | Zbl 1098.11019

[18] D. J. Grynkiewicz and R. Sabar, Monochromatic and zero-sum sets of nondecreasing modified diameter. Electron. J. Combin. 13 (2006), no. 1, Research Paper 28, 19 pp. (electronic). | MR 2212501 | Zbl 1084.05073

[19] D. J. Grynkiewicz, Sumsets, Zero-sums and Extremal Combinatorics. Ph. D. Dissertation, Caltech (2005).

[20] D. J. Grynkiewicz, A Step Beyond Kemperman’s Stucture Theorem. Preprint (2007). | MR 2573603 | Zbl pre05666966

[21] Y. O. Hamidoune and A. Plagne, A new critical pair theorem applied to sum-free sets in abelian groups. Comment. Math. Helv. 79 (2004), no. 1, 183–207. | MR 2031705 | Zbl 1045.11072

[22] Y. O. Hamidoune, On weighted sequence sums. Comb. Prob. Comput. 4 (1995), 363–367. | MR 1377556 | Zbl 0848.20049

[23] Y. O. Hamidoune, On weighted sums in abelian groups. Discrete Math. 162 (1996), 127–132. | MR 1425783 | Zbl 0872.11016

[24] T. Hungerford, Algebra. Springer-Verlag, New York, 1974. | MR 600654 | Zbl 0293.12001

[25] J. H. B. Kemperman, On Small Sumsets in an Abelian Group. Acta Math. 103 (1960), 63–88. | MR 110747 | Zbl 0108.25704

[26] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen. Math. Z. 58 (1953), 459–484. | MR 56632 | Zbl 0051.28104

[27] M. Kneser, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen. Math. Z. 64 (1955), 429–434. | MR 68536 | Zbl 0064.04305

[28] S. Lang, Algebra. Third edition, Yale University, New Haven, CT, 1993.

[29] V. Lev, Critical pairs in abelian groups and Kemperman’s structure theorem. Int. J. Number Theory 2 (2006), no. 3, 379–396. | MR 2264598 | Zbl 1157.11040

[30] M. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Graduate Texts in Mathematics 165, Springer-Verlag, New York, 1996. | MR 1477155 | Zbl 0859.11003

[31] J. E. Olson, An addition theorem for finite abelian groups. J. Number Theory 9 (1977), no. 1, 63–70. | MR 437657 | Zbl 0351.20032

[32] O. Ordaz and D. Quiroz, Representation of group elements as subsequences sums. Discrete Mathematics 308 (2008), no. 15, 3315–3321. | MR 2423413 | Zbl 1143.20032

[33] T. Tao and V. Vu, Additive Combinatorics. Cambridge Studies in Advanced Mathematics 105, Cambridge University Press, Cambridge, 2006. | MR 2289012 | Zbl 1127.11002