Absolute norms of p-primary units
Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 3, p. 735-742

We prove a local analogue of a theorem of J. Martinet about the absolute norm of the relative discriminant ideal of an extension of number fields. The result can be seen as a statement about 2-primary units. We also prove a similar statement about the absolute norms of p-primary units, for all primes p.

Nous prouvons un analogue local d’un théorème de J. Martinet sur la norme absolue du discrimant relatif d’une extension de corps de nombres. Ce résultat peut être vu comme un énoncé sur les unités 2-primaires. Nous prouvons également un résultat similaire pour la norme absolue des unités p-primaires, pour tout p premier.

@article{JTNB_2009__21_3_735_0,
     author = {Pisolkar, Supriya},
     title = {Absolute norms of $p$-primary units},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux 1},
     volume = {21},
     number = {3},
     year = {2009},
     pages = {735-742},
     doi = {10.5802/jtnb.699},
     mrnumber = {2605544},
     zbl = {1214.11131},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2009__21_3_735_0}
}
Pisolkar, Supriya. Absolute norms of $p$-primary units. Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 3, pp. 735-742. doi : 10.5802/jtnb.699. http://www.numdam.org/item/JTNB_2009__21_3_735_0/

[1] Dalawat C.S., Local discriminants, kummerian extensions, and abelian curves. ArXiv:0711.3878.

[2] Fesenko, I. B., Vostokov, S. V., Local fields and their extensions. Second edition. Translations of Mathematical Monographs 121, AMS Providence, RI, 2001. | MR 1218392 | Zbl 1156.11046

[3] Hasse H., Number theory. Classics in Mathematics. Springer-Verlag, Berlin, 2002. | MR 1885791 | Zbl 0991.11001

[4] Martinet, J., Les discriminants quadratiques et la congruence de Stickelberger. Sém. Théor. Nombres Bordeaux (2) 1 (1989), no. 1, 197–204. | Numdam | MR 1050275 | Zbl 0731.11061

[5] Neukirch, J., Class field theory. Grund. der Math. Wiss. 280. Springer-Verlag, Berlin, 1986. | MR 819231 | Zbl 0587.12001

[6] Jean-Pierre Serre, Local Fields. GTM 67, Springer-Verlag, 1979. | MR 554237 | Zbl 0423.12016