Nous démontrons que la “conjecture de hauteur bornée” est optimale dans le sens suivant. Soit une variété irréductible dans une puissance d’une courbe elliptique. Si les sous-variétés anormales de recouvrent tout , alors chaque ouvert de a une hauteur non bornée. Nous donnons aussi quelques exemples
In this article we show that the Bounded Height Conjecture is optimal in the sense that, if is an irreducible subvariety with empty deprived set in a power of an elliptic curve, then every open subset of does not have bounded height. The Bounded Height Conjecture is known to hold. We also present some examples and remarks.
Mots clés : Height, Elliptic curves, Subvarieties
@article{JTNB_2009__21_3_771_0, author = {Viada, Evelina}, title = {The optimality of the {Bounded} {Height} {Conjecture}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {771--786}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {3}, year = {2009}, doi = {10.5802/jtnb.702}, zbl = {1203.11048}, mrnumber = {2605547}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.702/} }
TY - JOUR AU - Viada, Evelina TI - The optimality of the Bounded Height Conjecture JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 771 EP - 786 VL - 21 IS - 3 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.702/ DO - 10.5802/jtnb.702 LA - en ID - JTNB_2009__21_3_771_0 ER -
Viada, Evelina. The optimality of the Bounded Height Conjecture. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 771-786. doi : 10.5802/jtnb.702. http://archive.numdam.org/articles/10.5802/jtnb.702/
[1] E. Bombieri, D. Masser and U. Zannier, Intersecting a curve with algebraic subgroups of multiplicative groups. Int. Math. Res. Not. 20 (1999), 1119–1140. | MR | Zbl
[2] E. Bombieri, D. Masser and U. Zannier, Anomalous subvarieties - Structure Theorem and applications. Int. Math. Res. Not. 19 (2007), 33 pages. | MR | Zbl
[3] P. Habegger, Bounded height for subvarieties in abelian varieties. Invent. math. 176 (2009), 405–447. | Zbl
[4] G. Rémond, Intersection de sous-groupes et de sous-variétés II. J. Inst. Math. Jussieu 6 (2007), 317–348. | MR | Zbl
[5] G. Rémond, Intersection de sous-groups et de sous-variétés III. To appear in Com. Mat. Helv. | MR
[6] G. Rémond and E. Viada, Problème de Mordell-Lang modulo certaines sous-variétés abéliennes. Int. Math. Res. Not. 35 (2003), 1915–1931. | MR | Zbl
[7] E. Viada, The intersection of a curve with algebraic subgroups in a product of elliptic curves. Ann. Scuola Norm. Sup. Pisa cl. Sci. 5 vol. II (2003), 47–75. | Numdam | MR | Zbl
[8] E. Viada, The intersection of a curve with a union of translated codimension-two subgroups in a power of an elliptic curve, Algebra and Number Theory 3 vol. 2 (2008), 248–298. | MR | Zbl
[9] E. Viada, Non-dense subsets of varieties in a power of an elliptic curve. Int. Math. Res. Not. 7 (2009), 1214–1246. | MR | Zbl
Cité par Sources :