Soit une extension galoisienne d’un corps hilbertien et dénombrable. Bien que ne soit pas nécessairement hilbertien, nous montrons qu’il existe beaucoup de grandes sous-extensions de qui le sont.
Let be a Galois extension of a countable Hilbertian field . Although need not be Hilbertian, we prove that an abundance of large Galois subextensions of are.
@article{JTNB_2013__25_1_31_0, author = {Bary-Soroker, Lior and Fehm, Arno}, title = {Random Galois extensions of Hilbertian fields}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {31--42}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {1}, year = {2013}, doi = {10.5802/jtnb.823}, mrnumber = {3063828}, zbl = {06173995}, language = {en}, url = {http://archive.numdam.org/item/JTNB_2013__25_1_31_0/} }
Bary-Soroker, Lior; Fehm, Arno. Random Galois extensions of Hilbertian fields. Journal de Théorie des Nombres de Bordeaux, Tome 25 (2013) no. 1, pp. 31-42. doi : 10.5802/jtnb.823. http://archive.numdam.org/item/JTNB_2013__25_1_31_0/
[1] Lior Bary-Soroker, On the characterization of Hilbertian fields. International Mathematics Research Notices, 2008. | MR 2439555 | Zbl 1217.12003
[2] Lior Bary-Soroker, On pseudo algebraically closed extensions of fields. Journal of Algebra 322(6) (2009), 2082–2105. | MR 2542832 | Zbl 1213.12006
[3] Lior Bary-Soroker and Arno Fehm, On fields of totally -adic numbers. http://arxiv.org/abs/1202.6200, 2012.
[4] M. Fried and M. Jarden, Field Arithmetic. Ergebnisse der Mathematik III 11. Springer, 2008. 3rd edition, revised by M. Jarden. | MR 2445111 | Zbl 1145.12001
[5] Dan Haran, Hilbertian fields under separable algebraic extensions. Invent. Math. 137(1) (1999), 113–126. | MR 1702139 | Zbl 0933.12003
[6] Dan Haran, Moshe Jarden, and Florian Pop, The absolute Galois group of subfields of the field of totally -adic numbers. Functiones et Approximatio, Commentarii Mathematici, 2012. | MR 2931667
[7] Moshe Jarden, Large normal extension of Hilbertian fields. Mathematische Zeitschrift 224 (1997), 555–565. | MR 1452049 | Zbl 0873.12001
[8] Thomas J. Jech, Set Theory. Springer, 2002. | MR 1940513 | Zbl 1007.03002
[9] Serge Lang, Diophantine Geometry. Interscience Publishers, 1962. | MR 142550 | Zbl 0115.38701
[10] Jean-Pierre Serre, Topics in Galois Theory. Jones and Bartlett Publishers, 1992. | MR 1162313 | Zbl 0746.12001