On the error term of the logarithm of the lcm of a quadratic sequence
Journal de théorie des nombres de Bordeaux, Volume 25 (2013) no. 2, p. 457-470

We study the logarithm of the least common multiple of the sequence of integers given by 1 2 +1,2 2 +1,,n 2 +1. Using a result of Homma [5] on the distribution of roots of quadratic polynomials modulo primes we calculate the error term for the asymptotics obtained by Cilleruelo [3].

Nous étudions le logarithme du plus petit commun multiple de la séquence de nombres entiers 1 2 +1,2 2 +1,,n 2 +1. En utilisant un résultat de Homma [5] sur la distribution des racines de polynômes quadratiques modulo des nombres premiers, nous calculons le terme d’erreur dans les formules obtenues par Cilleruelo [3].

@article{JTNB_2013__25_2_457_0,
     author = {Ru\'e, Juanjo and \v Sarka, Paulius and Zumalac\'arregui, Ana},
     title = {On the error term of the logarithm of the lcm of a quadratic sequence},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {25},
     number = {2},
     year = {2013},
     pages = {457-470},
     doi = {10.5802/jtnb.843},
     mrnumber = {3228315},
     zbl = {1283.11058},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2013__25_2_457_0}
}
Rué, Juanjo; Šarka, Paulius; Zumalacárregui, Ana. On the error term of the logarithm of the lcm of a quadratic sequence. Journal de théorie des nombres de Bordeaux, Volume 25 (2013) no. 2, pp. 457-470. doi : 10.5802/jtnb.843. http://www.numdam.org/item/JTNB_2013__25_2_457_0/

[1] P. Bateman, J. Kalb and A. Stenger, A limit involving least common multiples. Amer. Math. Monthly 109 (2002), 393–394. | Zbl 1124.11300

[2] P. L. Chebishev, Memoire sur les nombres premiers. J. de Math. Pures et Appl. 17 (1852), 366–390.

[3] J. Cilleruelo, The least common multiple of a quadratic sequence. Compos. Math. 147 (2011), no.4, 1129–1150. | MR 2822864 | Zbl 1248.11068

[4] W. Duke, J. Friedlander and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli. Ann. of Math. 141 (1995), no.2, 423–441. | MR 1324141 | Zbl 0840.11003

[5] K. Homma, On the discrepancy of uniformly distributed roots of quadratic congruences. J. of Number Theory 128 (2008), no.3, 500–508. | MR 2389853 | Zbl 1195.11089

[6] S. Hong, G. Quian and Q. Tan, The least common multiple of sequence of product of linear polynomials. Acta Math. Hungar. 135 (2012), no.1-2, 160-167. | MR 2898796 | Zbl 1265.11093

[7] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge University Press, 2007. | MR 2378655 | Zbl 1245.11002

[8] P. Moree, Counting Numbers in multiplicative sets: Landau versus Ramanujan. Šiauliai Math. Semin., to appear. | MR 3012680

[9] H. Niederreiter, Random number generation and quasi-Monte Carlo methods. CBMS-NSF Regional Conference Series in Applied Mathematics 63 , Society for Industrial and Applied Mathematics (SIAM), 1992. | MR 1172997 | Zbl 0761.65002

[10] Á. Tóth, Roots of quadratic congruences. Internat. Math. Res. Notices 14 (2000), 719–739. | MR 1776618 | Zbl 1134.11339