Quadratic approximation to automatic continued fractions
Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 2, pp. 463-482.

Nous étudions les ensembles des valeurs prises par les exposants d’approximation quadratique w 2 et w 2 * évalués aux nombres réels dont la suite des quotients partiels est engendrée par un automate fini. Entre autres résultats, nous montrons que ces ensembles contiennent tout nombre rationnel suffisamment grand et également des nombres transcendants.

We study the sets of values taken by the exponents of quadratic approximation w 2 and w 2 * evaluated at real numbers whose sequence of partial quotients is generated by a finite automaton. Among other results, we show that these sets contain every sufficiently large rational number and also some transcendental numbers.

DOI : 10.5802/jtnb.910
Classification : 11J70, 11J82
Mots clés : Continued fraction, approximation by quadratic numbers, automatic sequence.
Bugeaud, Yann 1

1 Université de Strasbourg Mathématiques 7, rue René Descartes 67084 STRASBOURG (FRANCE)
@article{JTNB_2015__27_2_463_0,
     author = {Bugeaud, Yann},
     title = {Quadratic approximation to automatic continued fractions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {463--482},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {27},
     number = {2},
     year = {2015},
     doi = {10.5802/jtnb.910},
     mrnumber = {3393163},
     zbl = {06504489},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.910/}
}
TY  - JOUR
AU  - Bugeaud, Yann
TI  - Quadratic approximation to automatic continued fractions
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2015
SP  - 463
EP  - 482
VL  - 27
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - http://archive.numdam.org/articles/10.5802/jtnb.910/
DO  - 10.5802/jtnb.910
LA  - en
ID  - JTNB_2015__27_2_463_0
ER  - 
%0 Journal Article
%A Bugeaud, Yann
%T Quadratic approximation to automatic continued fractions
%J Journal de théorie des nombres de Bordeaux
%D 2015
%P 463-482
%V 27
%N 2
%I Société Arithmétique de Bordeaux
%U http://archive.numdam.org/articles/10.5802/jtnb.910/
%R 10.5802/jtnb.910
%G en
%F JTNB_2015__27_2_463_0
Bugeaud, Yann. Quadratic approximation to automatic continued fractions. Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 2, pp. 463-482. doi : 10.5802/jtnb.910. http://archive.numdam.org/articles/10.5802/jtnb.910/

[1] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers, II. Continued fractions, Acta Math. 195 (2005), 1–20. | MR | Zbl

[2] B. Adamczewski and Y. Bugeaud, A short proof of the transcendence of Thue–Morse continued fractions, Amer. Math. Monthly 114 (2007), 536–540. | MR | Zbl

[3] B. Adamczewski and Y. Bugeaud, Palindromic continued fractions, Ann. Inst. Fourier (Grenoble) 57 (2007), 1557–1574. | Numdam | MR | Zbl

[4] B. Adamczewski and Y. Bugeaud, Dynamics for β-shifts and Diophantine approximation, Ergod. Th. Dynam. Syst. 27 (2007), 1695–1711. | MR | Zbl

[5] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, Ann. of Math. 165 (2007), 547–566. | MR | Zbl

[6] B. Adamczewski et Y. Bugeaud, Mesures de transcendance et aspects quantitatifs de la méthode de Thue–Siegel–Roth–Schmidt, Proc. London Math. Soc. 101 (2010), 1–31. | MR | Zbl

[7] B. Adamczewski and Y. Bugeaud, Transcendence measures for continued fractions involving repetitive or symmetric patterns, J. Europ. Math. Soc. 12 (2010), 883–914. | MR | Zbl

[8] B. Adamczewski, Y. Bugeaud et F. Luca, Sur la complexité des nombres algébriques, C. R. Acad. Sci. Paris 339 (2004), 11–14. | MR | Zbl

[9] J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in Sequences and Their Applications (Singapore, 1998), Springer Ser. Discrete Math. Theor. Comput. Sci., Springer-Verlag, London, (1999), 1–16. | MR | Zbl

[10] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, (2003). | MR | Zbl

[11] V. Berthé, C. Holton and L. Q. Zamboni, Initial powers of Sturmian sequences, Acta Arith. 122 (2006), 315–347. | MR | Zbl

[12] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics 160, Cambridge, (2004). | MR | Zbl

[13] Y. Bugeaud, Diophantine approximation and Cantor sets, Math. Ann. 341 (2008), 677–684. | MR | Zbl

[14] Y. Bugeaud, On simultaneous rational approximation to a real number and its integral powers, Ann. Inst. Fourier (Grenoble) 60 (2010), 2165–2182. | Numdam | MR | Zbl

[15] Y. Bugeaud, On the rational approximation to the Thue-Morse-Mahler numbers, Ann. Inst. Fourier (Grenoble) 61 (2011), 2065–2076. | Numdam | MR | Zbl

[16] Y. Bugeaud, Variations around a problem of Mahler and Mendès France, J. Aust. Math. Soc. 92 (2012), 37–44. | MR | Zbl

[17] Y. Bugeaud, Continued fractions with low complexity: Transcendence measures and quadratic approximation, Compos. Math. 148 (2012), 718–750. | MR

[18] Y. Bugeaud, Automatic continued fractions are transcendental or quadratic, Ann. Sci. École Norm. Sup. 46 (2013), 1005–1022. | MR | Zbl

[19] A. Cobham, On the Hartmanis-Stearns problem for a class of tag machines, in Conference Record of 1968 Ninth Annual Symposium on Switching and Automata Theory, Schenectady, New York (1968), 51–60.

[20] H. Davenport and W. M. Schmidt, Approximation to real numbers by quadratic irrationals, Acta Arith. 13 (1967), 169–176. | MR | Zbl

[21] J. F. Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monats. Math. Phys. 48 (1939), 176–189. | MR | Zbl

[22] P. Lévy, Sur le développement en fraction continue d’un nombre choisi au hasard, Compositio Math. 3 (1936), 286–303. | MR

[23] K. Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II, J. reine angew. Math. 166 (1932), 118–150. | MR | Zbl

[24] M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 84–100. | MR

[25] O. Perron, Die Lehre von den Ketterbrüchen. Teubner, Leipzig, (1929).

[26] M. Queffélec, Transcendance des fractions continues de Thue–Morse, J. Number Theory 73 (1998), 201–211. | MR | Zbl

[27] M. Queffélec, Irrational numbers with automaton-generated continued fraction expansion, in Dynamical systems (Luminy-Marseille, 1998), 190–198, World Sci. Publ., River Edge, NJ, (2000). | MR | Zbl

[28] L. Schaeffer and J. Shallit, The critical exponent is computable for automatic sequences, Int. J. Found. Comput. Sci. 23 (2012), 1611–1626. | MR | Zbl

[29] W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals, Acta Math. 119 (1967), 27–50. | MR | Zbl

[30] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1–67. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, ed., Universitetsforlaget, Oslo, (1977), 413–478.

Cité par Sources :