Logarithms of algebraic numbers
Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 2, p. 499-535

This article is devoted to a new proof of transcendence for evaluations of the archimedean logarithm at all algebraic numbers except unity. As in other proofs of the same theorem, a sort of Padé approximation for the natural logarithm is employed. Whereas in previous approaches the used Padé approximants have been obtained rather ad hoc, we construct them here systematically by Siegel’s Lemma. The method presented suggests some generalizations, which are also briefly surveyed.

Cet article est consacré à une nouvelle démonstration de la transcendance des évaluations du logarithme archimédien en tout nombre algébrique, exception faite de l’unité. Par analogie avec d’autres démonstrations de ce résultat, nous employons une variante de l’approximation de Padé pour le logarithme népérien. Une différence cependant : la construction de ces approximations de Padé est ici obtenue par le lemme de Siegel. La méthode exposée suggère des généralisations qui sont aussi évoquées.

DOI : https://doi.org/10.5802/jtnb.912
Classification:  11J82
@article{JTNB_2015__27_2_499_0,
     author = {K\"uhne, Lars},
     title = {Logarithms of algebraic numbers},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {27},
     number = {2},
     year = {2015},
     pages = {499-535},
     doi = {10.5802/jtnb.912},
     mrnumber = {3393165},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2015__27_2_499_0}
}
Kühne, Lars. Logarithms of algebraic numbers. Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 2, pp. 499-535. doi : 10.5802/jtnb.912. http://www.numdam.org/item/JTNB_2015__27_2_499_0/

[1] F. Amoroso and C. Viola, Approximation measures for logarithms of algebraic numbers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30, 1 (2001), 225–249. | Numdam | MR 1882030 | Zbl 1008.11028

[2] Y. André, G-functions and geometry, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, Braunschweig, (1989). | MR 990016 | Zbl 0688.10032

[3] —, Théorie des motifs et interprétation géométrique des valeurs p-adiques de G-functions (une introduction), Number theory (Paris, 1992–1993), London Math. Soc. Lecture Note Ser., 215, Cambridge Univ. Press, Cambridge, (1995), 37–60.

[4] —, G-fonctions et transcendance, J. Reine Angew. Math. 476 (1996), 95–125. | MR 1401697

[5] —, Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité, Ann. of Math. (2) 151, 2 (2000), 705–740. | MR 1765707

[6] —, Séries Gevrey de type arithmétique. II. Transcendance sans transcendance, Ann. of Math. (2) 151, 2 (2000), 741–756. | MR 1765708

[7] —, Arithmetic Gevrey series and transcendence. A survey, J. Théor. Nombres Bordeaux 15, 1 (2003), 1–10, Les XXIIèmes Journées Arithmetiques (Lille, 2001).

[8] Y. André and Francesco Baldassarri, Geometric theory of G-functions, Arithmetic geometry (Cortona, 1994), Sympos. Math., XXXVII, Cambridge Univ. Press, Cambridge, (1997), 1–22. | MR 1472489 | Zbl 0936.14014

[9] A. Baker, Approximations to the logarithms of certain rational numbers, Acta Arith. 10 (1964), 315–323. | MR 171749 | Zbl 0201.37603

[10] A. Baker, Linear forms in the logarithms of algebraic numbers. I, II, III, Mathematika 13 (1966), 204–216; ibid. 14 (1967), 102–107; ibid. 14 (1967), 220–228. | MR 220680 | Zbl 0161.05202

[11] —, Logarithmic forms and the abc-conjecture, Number theory (Eger, 1996), de Gruyter, Berlin (1998), 37–44. | MR 1628831

[12] A. Baker and G. Wüstholz, Logarithmic forms and Diophantine geometry, New Mathematical Monographs, vol. 9, Cambridge University Press, Cambridge, (2007). | MR 2382891 | Zbl 1145.11004

[13] D. Bertrand, On André’s proof of the Siegel-Shidlovsky theorem, Colloque Franco-Japonais: Théorie des Nombres Transcendants (Tokyo, 1998), Sem. Math. Sci., 27, Keio Univ., Yokohama, (1999), 51–63. | MR 1726524

[14] D. Bertrand and F. Beukers, Équations différentielles linéaires et majorations de multiplicités, Ann. Sci. École Norm. Sup. (4) 18, 1 (1985), 181–192. | Numdam | MR 803199 | Zbl 0578.12016

[15] A. A. Bolibrukh, The Fuchs inequality on a compact Kähler manifold, Dokl. Akad. Nauk 380, 4 (2001), 448–451. | MR 1875499 | Zbl 1045.37037

[16] E. Bombieri, On G-functions, Recent progress in analytic number theory, 2 (Durham, 1979), Academic Press, London, (1981), 1–67. | MR 637359 | Zbl 0461.10031

[17] —, Effective Diophantine approximation on G m , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 1, 61–89. | Numdam | MR 1215999

[18] E. Bombieri and J. Vaaler, On Siegel’s lemma, Invent. Math. 73, 1 (1983), 11–32. | MR 707346 | Zbl 0533.10030

[19] Y. Bugeaud and M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Theory 61, 2 (1996), 311–342. | MR 1423057 | Zbl 0870.11045

[20] D.V. Chudnovsky and G.V. Chudnovsky, Applications of Padé approximations to Diophantine inequalities in values of G-functions, Number theory (New York, 1983–84), Lecture Notes in Math., 1135, Springer, Berlin, (1985), 9–51. | MR 803349 | Zbl 0561.10016

[21] P. Dèbes, G-fonctions et théorème d’irreductibilité de Hilbert, Acta Arith. 47, 4 (1986), 371–402. | MR 884733 | Zbl 0565.12012

[22] B. Dwork, G. Gerotto, and F.J. Sullivan, An introduction to G-functions, Annals of Mathematics Studies, 133, Princeton University Press, Princeton, NJ, (1994). | MR 1274045 | Zbl 0830.12004

[23] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73, 3 (1983), 349–366. | MR 718935 | Zbl 0588.14026

[24] A.I. Galočkin, Lower bounds of linear forms of the values of certain G-functions, Mat. Zametki 18, 4 (1975), 541–552. | MR 414499

[25] A. Gelfond, On Hilbert’s seventh problem, Mathematics of the USSR - Izvestiya 7 (1934), 623–630. | Zbl 0010.39302

[26] A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 95–103. | Numdam | MR 199194 | Zbl 0145.17602

[27] C. Hermite, Sur la fonction exponentielle, C. R. Math. Acad. Sci. Paris 77 (1873), 18–24, 74–79, 226–233, 285–293.

[28] K. Mahler, On the approximation of logarithms of algebraic numbers, Philos. Trans. R. Soc. Lond., Ser. A 245 (1953), 371–398 (English). | MR 52471 | Zbl 0052.04404

[29] —, Lectures on transcendental numbers, Lecture Notes in Mathematics, 546, Springer-Verlag, Berlin, 1976. | MR 491533

[30] R. Marcovecchio, The Rhin-Viola method for log2, Acta Arith. 139, 2 (2009), 147–184. | MR 2539543 | Zbl 1197.11083

[31] R. Marcovecchio and C. Viola, Irrationality and nonquadraticity measures for logarithms of algebraic numbers, J. Aust. Math. Soc. 92, 2 (2012), 237–267. | MR 2999157 | Zbl 1271.11076

[32] M. Mignotte, Approximations rationnelles de π et quelques autres nombres, Journées Arithmétiques (Grenoble, 1973), Soc. Math. France, Paris (1974) 121–132. Bull. Soc. Math. France, Mém. 37. | Numdam | MR 364120 | Zbl 0286.10017

[33] H.L. Montgomery and R.C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, Cambridge, 2007. | MR 2378655 | Zbl 1142.11001

[34] Y. Nesterenko and M. Waldschmidt, On the approximation of the values of the exponential function and logarithm by algebraic numbers, Diophantine approximations (Proceedings of papers dedicated to the memory of N. I. Fel’dman) (Yuri Nesterenko, ed.), Center for applied research under Mech.-Math. Faculty of MSU, Moscow, (1996).

[35] M.S. Nurmagomedov, The arithmetical properties of the values of G-functions, Vestnik Moskov. Univ. Ser. I Mat. Meh. 26, 6 (1971) 79–86. | MR 294263 | Zbl 0238.10019

[36] N. Ratazzi and E. Ullmo, Galois + équidistribution = Manin-Mumford, Arithmetic geometry, Clay Math. Proc., 8, Amer. Math. Soc., Providence, RI, (2009), 419–430. | MR 2498067 | Zbl 1250.11062

[37] E. Reyssat, Mesures de transcendance pour les logarithmes de nombres rationnels, Diophantine approximations and transcendental numbers (Luminy, 1982), Progr. Math., 31, Birkhäuser Boston, Boston, MA, (1983), 235–245. | MR 702201 | Zbl 0522.10023

[38] T. Schneider, Transzendenzuntersuchungen periodischer Funktionen I, J. Reine Angew. Math. 172 (1934), 65–69. | Zbl 0010.10501

[39] A. B. Shidlovskii, Transcendental numbers, de Gruyter Studies in Mathematics, 12, Walter de Gruyter & Co., Berlin, (1989), Translated from the Russian by Neal Koblitz, With a foreword by W. Dale Brownawell. | MR 1033015 | Zbl 0689.10043

[40] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abhandlungen der Königlich-Preußischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse Nr. 1 (1929).

[41] C. L. Stewart and Kun Rui Yu, On the abc conjecture, Math. Ann. 291, 2 (1991), 225–230. | MR 1129361 | Zbl 0761.11030

[42] C. L. Stewart and Kunrui Yu, On the abc conjecture. II, Duke Math. J. 108, 1 (2001), 169–181. | MR 1831823 | Zbl 1036.11032

[43] M. van der Put and M. F. Singer, Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 328, Springer-Verlag, Berlin, (2003). | MR 1960772 | Zbl 1036.12008

[44] F. von Lindemann, Über die Zahl π, Math. Ann. 20 (1882), 213–225. | MR 1510165

[45] M. Waldschmidt, Diophantine approximation on linear algebraic groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 326, Springer-Verlag, Berlin, (2000), Transcendence properties of the exponential function in several variables. | MR 1756786 | Zbl 0944.11024

[46] M. Waldschmidt, On a problem of Mahler concerning the approximation of exponentials and logarithms, Publ. Math. Debrecen 56, 3-4 (2000), 713–738, Dedicated to Professor Kálmán Győry on the occasion of his 60th birthday. | MR 1766007 | Zbl 1002.11061

[47] K. Weierstrass, Zu Lindemann’s Abhandlung ’über die Ludolph’sche Zahl’, Sitzungsberichte der Königlich-Preußischen Akademie der Wissenschaften (1885), 1067–1085.

[48] K. Yu, p-adic logarithmic forms and group varieties. I, J. Reine Angew. Math. 502 (1998), 29–92. | MR 1647551 | Zbl 0912.11029

[49] —, p-adic logarithmic forms and group varieties. II, Acta Arith. 89, 4 (1999), 337–378. | MR 1703864 | Zbl 0928.11031

[50] —, p-adic logarithmic forms and group varieties. III, Forum Math. 19, 2 (2007), 187–280. | MR 2313840 | Zbl 1132.11038

[51] D. Zagier, The dilogarithm function, Frontiers in number theory, physics, and geometry. II, Springer, Berlin, (2007), 3–65. | MR 2290758 | Zbl 1176.11026

[52] U. Zannier (ed.), On Some Applications of Diophantine Approximationens (a translation of Carl Ludwig Siegel’s Über einige Anwendungen diophantischer Approximationen), Monographs, 2, Edizioni della Normale, Pisa, (2014).