Simultaneous Padé approximants to the Euler, exponential and logarithmic functions
Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 2, p. 565-589

We present a general method to obtain simultaneous explicit Padé type approximations to the exponential and logarithmic functions.

Nous présentons une méthode générale qui permet d’obtenir des approximations simultanées de type Padé pour les fonctions exponentielles et logarithmes.

DOI : https://doi.org/10.5802/jtnb.914
Classification:  33C45,  41A21,  33C20,  11J72
Keywords: Padé approximants, Orthogonal polynomials, Hypergeometric series
@article{JTNB_2015__27_2_565_0,
     author = {Rivoal, Tanguy},
     title = {Simultaneous Pad\'e approximants to the Euler, exponential and logarithmic functions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {27},
     number = {2},
     year = {2015},
     pages = {565-589},
     doi = {10.5802/jtnb.914},
     mrnumber = {3393167},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2015__27_2_565_0}
}
Rivoal, Tanguy. Simultaneous Padé approximants to the Euler, exponential and logarithmic functions. Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 2, pp. 565-589. doi : 10.5802/jtnb.914. http://www.numdam.org/item/JTNB_2015__27_2_565_0/

[1] K. Alladi, M. L. Robinson, Legendre polynomials and irrationality, J. Reine Angew. Math. 318 (1980), 137–155. | MR 579389 | Zbl 0425.10039

[2] A. I. Aptekarev, A. Branquinho, W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355, 10 (2003), 3887–3914. | MR 1990569 | Zbl 1033.33002

[3] A. I. Aptekarev (ed.), Rational approximation of Euler’s constant and recurrence relations, Current Problems in Math., 9, Steklov Math. Inst. RAN, (2007). (Russian) | Zbl 1134.41001

[4] F. Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc. 11, 3 (1979), 268–272. | MR 554391 | Zbl 0421.10023

[5] F. Beukers, Legendre polynomials in irrationality proofs, Bull. Austral. Math. Soc. 22, 3 (1980), 431–438. | MR 601649 | Zbl 0436.10016

[6] E. Bombieri, J. Mueller, On effective measures of irrationality for a/b r and related numbers, J. Reine Angew. Math. 342 (1983), 173–196. | MR 703487 | Zbl 0516.10024

[7] T. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications 13, Gordon and Breach Science Publishers, 1978. | MR 481884 | Zbl 0389.33008

[8] G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions, J. Math. Pures Appl. (9) 58, 4 (1979), 445–476. | MR 566655 | Zbl 0434.10023

[9] G. V. Chudnovsky, Formules d’Hermite pour les approximants de Padé de logarithmes et de fonctions binomes, et mesures d’irrationalité, C. R. Acad. Sci. Paris Sér. A-B 288, 21 (1979), 965–967. | MR 540368 | Zbl 0418.41011

[10] G. V. Chudnovsky, Approximations de Padé explicites pour les solutions des équations différentielles linéaires fuchsiennes C. R. Acad. Sci. Paris Sér. A-B 290, 3 (1980), 135–137. | MR 563959 | Zbl 0424.41014

[11] S. Fischler, T. Rivoal, Approximants de Padé et séries hypergéométriques équilibrées, J. Math. Pures Appl. 82, 10 (2003), 1369–1394. | MR 2020926 | Zbl 1064.11053

[12] M. Hata, On the linear independence of the values of polylogarithmic functions, J. Math. Pures Appl. (9) 69, 2 (1990), 133–173. | MR 1067449 | Zbl 0712.11040

[13] M. Huttner, Constructible sets of linear differential equations and effective rational approximations of polylogarithmic functions, Israel J. Math. 153 (2006), 1–43. | MR 2254636 | Zbl 1143.34057

[14] A. Kuijlaars, K. McLaughlin, Asymptotic zero behavior of Laguerre polynomials with negative parameter, Constr. Approx. 20, 4 (2004), 497–523. | MR 2078083 | Zbl 1069.33008

[15] K. Mahler, Applications of some formulae by Hermite to the approximation of exponentials and logarithms, Math. Ann. 168 (1967), 200–227. | MR 205929 | Zbl 0144.29201

[16] T. Matala-Aho, Type II Hermite-Padé approximations of generalized hypergeometric series, Constr. Approx. 33, 3 (2011), 289–312. | MR 2784481 | Zbl 1236.41017

[17] Yu. V. Nesterenko, Hermite-Padé approximants of generalized hypergeometric functions (Russian) Mat. Sb. 185, 10 (1994), 39–72; translation in Russian Acad. Sci. Sb. Math. 83, 1 (1995), 189–219. | MR 1309182 | Zbl 0849.11052

[18] G. Rhin, C. Viola, On a permutation group related to ζ(2), Acta Arith. 77, 1 (1996), 23–56. | MR 1404975 | Zbl 0864.11037

[19] T. Rivoal, Rational approximations for values of derivatives of the gamma function, Trans. Amer. Math. Soc. 361, 11 (2009), 6115–6149. | MR 2529926 | Zbl 1236.11061

[20] T. Rivoal, On the arithmetic nature of the values of the Gamma function, Euler’s constant and Gompertz’s constant, Michigan Math. J. 61 (2012), 239–254. | MR 2944478 | Zbl 1288.11073

[21] E. B. Saff, R. Varga, On the zeros and poles of Padé approximants to e z , III, Numer. Math. 30 (1978), 241–266. | MR 492295 | Zbl 0438.41015

[22] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, 1966. | MR 201688 | Zbl 0135.28101

[23] V. N. Sorokin, Joint approximations of the square root, logarithm, and arcsine (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2009, 2, 65–69, translation in Moscow Univ. Math. Bull. 64, 2 (2009), 80–83. | MR 2543176 | Zbl 1304.11061

[24] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. reine angew. Math. 135 (1909), 284–305. | MR 1580770

[25] A. Thue, Berechnung aller Lösungen gewisser Gleichungen von der Form ax r -by r =f, Videnskabs-Selskabets Skrifter, I. math.-naturv. KL, 4, 9 S, Christiania 1918.

[26] W. Van Assche, Padé and Hermite-Padé approximation and orthogonality, Surv. Approx. Theory 2 (2006), 61–91. | MR 2247778 | Zbl 1102.41017

[27] C. Viola, On Siegel’s method in Diophantine approximation to transcendental numbers, Number theory, II (Rome, 1995). Rend. Sem. Mat. Univ. Politec. Torino 53, 4 (1995), 455–469. | MR 1452398 | Zbl 0873.11043