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ON THE CONNECTION BETWEEN THE THEORY
OF SIGNAL FLOW GRAPHS

AND THE THEORY OF DIRECTED GRAPHS

p a r J . N l E D E R E I C H H O L Z (l)

Résumé. — La représentation des systèmes linéaires par des graphes de transfert de
Mason [7] était complétée par le développement des graphes de transfert de Coates [5] pour
lesquels Desoer [6] a démontré Voptimalité de la fonction de transfert de Coates. Ces deux
types de graphes de transfert peuvent être combinés par le concept des N-graphes de
Chow et Cassignol [3]. L'article suivant démontre la connexion de ces trois types de
graphes de transfert avec les graphes matriciels linéaires et finalement avec les bipartitions
des graphes de la théorie générale des graphes.

1. Introduction

A square matrix of the order n A = [afj] can always be représentée! by
aflow graph in the following way :

A node k (k = l(l)n-) is assigned to each row (or column) and an arc
(i, j) is directed node from i to node ƒ with the associated weight atj [a^ ^ 0).

Using the notation of the digraph theory we introducé the three-tuple
D(V> A, f) as a flow graph were V is a node-set, A a set of arcs or directed
edges and / a mapping function from A to the complex field with f((i, ƒ))
= dij for all i, j , € V [1]. For the development of the unifying concept of
matrix graphs some further définitions of the theory of directed and
undirected graphs need to be introduced :

An arc (i, /) is positively incident with its initial node i and negatively
incident with its terminal node ƒ. The positive degree of ip+ (i) is defined
as the number of arcs that are positively incident with node i, analogously
the négative degree p~ (i) is the number of arcs ha ving ias terminal node.
For an undirected graph G(V> E, f) the degree of node ip(i) indicates the
number of edges incident with i. A simple node of G is a node joined by

(1) Ingénieur en chef, Centre de calcul à l'université de Karlsruhe, département R.O.
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only one edge, whereas an isolated node is a node joined by no edges.
A simple graph in our sense contains only simple nodes. This is not the
définition commonly used in graph theory where a simple graph is a graph
having no loops and no parallel edges.

A digraph D is regular of degree k or /c-regular if p + (i) = p~(i) = k
for all i € V. An undirected graph G is regular of degree k if p(i) = k for
all i 6 V. A spanning subgraph of D is a subgraph with the same node-set
as D and a m-factor of D is a regular subgraph of degree m. A matching
subgraph of G is a spanning subgraph of G that is regular of degree one.
It forms a simple graph.

An undirected graph B(V[, V'2, E', ƒ') is said to be a bipartite graph
if its nodes can be partioned into two disjoint node-sets V'ly V2 in such
a way that an edge (£', ƒ') connects node i' € V2. with node / ' € V[
A directed bipartite graph D(V[y V2, A', ƒ') is defined analogously with
the additional characteristic that the arc-set A' can be classified into
two groups, one directed from V[ to V2 and another from V2 to V[.

If B(V[, V29 E'9f') corresponds to a flow graph D(V, A, f), then a
subgraph SD of D is an rc-factor if the corresponding subgraph SB of SD

in B is a regular graph of degree n and a subgraph SD of D is a 1-factor
or connection [6] if the corresponding subgraph SB of SD in J5is a matching
subgraph.

A matrix can always be associa te d directly with a bipartite graph and
a flow graph D(V, A, f) always corresponds to a bipartite graph B(V'ly V2,
E', ƒ') in the following way : To the node-set V of D one constructs a
one-to-one correspondence to V'2 with V[ = V for each edge (ir> j') or
(ƒ', i') if (i, j) 6 A with /'((»', ƒ')) = /'((/', ï)) = /((», /)) [9].

2. Matrix graphs
2.1 Conventions

A matrix can be represented by a matrix graph in the following way :
a) The rows and columns of the matrix are represented by nodes.

The column-nodes are placed in one level and the row-nodes in another
Ie vel below of this.

b) Each matrix element a^a^ ^ 0) is represented by the weight of an
edge connecting the i-th row-node with the /-th column-node.

This matrix graph actually forms a bipartite graph [4].
We now introducé internai nodes which are nodes in a level between

the column- and the row-level. A cross-point is an intersection of two
edges. It is always possible to deform a graph in such a way that a cross-
point is formed by only two edges, what we call a binary cross-point.

Using the well known addition rule respectively multiplication rule
for the weights of parallel respectively sériai edges, internai nodes can be
eliminated [7].
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2.2 Déterminants
The determinant of a square matrix A = [atj] of order n is given by

det A =
{3}

(1)

with the permutation symbol

A/a ... jn

where r is the number of transpositions in the permutation {/}of the first n
integers from their natural order. The case of no transposition corresponds
to the simple graph in figure 1.1.

Figure 1. — Simple graphs of transpositions as bipartite graphs

The case of one transposition with

ak+l,kak,k+l — «n«

corresponds to the simple graph with one binary cross-point of figure 1.2.
We notice that the number of transpositions in the permutation {ƒ}
equals the number of binary cross-points in the equivalent simple graph.

Now we can state the following rules for the évaluation of the deter-
minant of a square matrix :

a) Design the corresponding matrix graph.
b) Design ail possible simple subgraphs of the matrix graph containing

the whole node-set V of the matrix graph.
c) Evaluate the determinant using the following relation :

d e t 4 = ] T ( — l)c/f. Pk. (2)



6 J. NIEDEREICHHOLZ

with
Pk : the product of the weights associated to all the edges of the

simple subgraph k. The summation involves all possible subgraphs.
Ck : the stim of the weights of the eross-points of the simple subgraph k.

The weight of a cross-point is given by C2 (e) where e is the immber of
edges at this eross-point.

2.3 Simultaneous Linear Algebraic Équations

We turn now to a set of n Hnear algebraic équations in n -{- 1 variables

É a ü » i = 0 , i = l(i)i* (3)
i=o

with
xt : an unknown variable, i = l(l)n, i ^ ƒ
Xj : a known independent variable.
The gain formula for (3) is given by

- = ( - U w ? ( ~ i)CkPk{i). i = l(l)m i * ƒ (4)

with
Pk(i) : the product of the weight associated to all the edges of the

simple subgraph k after the exclusion of column-node i of the original
matrix graph.

An extended proof of (4) is given in [10]. Now we are prepared to deal
with the Null-node graphs.

3* Null-node graphs

We can convert a matrix graph into a Null-node graph by the foliowing
steps :

a) The column-nodes of a matrix graph become the variables xOï
xt, ..., xn of the matrix équation AX = N.

b) The row-nodes of a matrix graph become the n null-variables Nt
of the right hand side of the matrix équation.

The solution of (3) can be obtained by iV-graphs using the following
relation :
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with
xk : a known variable
Pr(x^) : the product of the weights associated to all the edges of the

r-th subgraph of the Null-node graph were node xt and all edges incident
with it are deleted. All nodes must be simple.

With the result of the Null-node graph gain formula (5) we turn to the
development of the Coates* gain formula for flow graphs.

4. Flow Graphs

For the conversion of an Null-node graph with n null-nodes and
n + 1 variables into a flow graph with no null-nodes, we take as a source-
node for instance x0 and coincide the other nodes in pairs ( JVj xt), i — l(l)n,
equivalent with the connection of edges of unit value directed from
node Ni to node xt. The gain formula (5) for xn yields the following
relation [10] :

Z(-i)Cr

m

with
Pr(xn) : the subgraph with node xn devoid of all incident edges and

all other nodes having exactly one incident edge.
The conversion of these subgraphs to flow graphs by the addition of

an unit edge yields one source-node x0 and one sink-node xn only, while
exactly one are is positively incident and negatively incident with each
other node. The subgraphs of the numerator in (7) yield the one-connec-
tions of Desoer [6] of the corresponding flow graph, while the subgraphs
of the denominator yield the connections of the flow graph with the source-
node not deleted.

We can show the following équivalence [10] :
If Cr is even (odd) then the number of loops lr in the corresponding

r-th subgraph in the numerator is also even (odd) and if n-Cm is even
(odd) the number of loops lm in the corresponding m-th subgraph in the
denominator is even (odd).

Using this correspondent we get the Coates, gain formula for flow
graphs :

with
Cr(G0-rt) : the product of the weights associated to all the arcs of the

r-th one-connection of the numerators transformation of the iV-graph
formula to a flow graph.
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Cm(G0) : the product of the weights associated to all the arcs of the
m-th connection of the denominators transformation of the iV-graph
formula to a flow graph.

With this result we turn to the Mason-gain formula for signal-flow
graphs.

5. Signal-Flow Graphs

A flow graph can be transformed to a signal-flow graph by the follo-
wing steps [2] :

a) Add a weight of 1 to the weight of each existing self-loop.

b) Add a self-loop with a weight of 1 to each node devoid of a self-
loop except the source-node.

c) Break the source-node into n source-nodes. Dénote them by the
weights of the arcs positively incident with the old source-node. Multiply
these weights by their négative reciprocals to get the new weights of the
arcs positively incident with the n source-nodes.

It is also possible to develop a signal-flow graph and the Mason-gain
formula from the JV-graph gain formula af ter a rearrangement of the set
of n independent équations in n + 1 variables in such a way that all
edges (NiXt), i = l(l)n are verified with a weight of (•— 1), which is always
possible [4]. The N-graph gain formula yields the following relation [10] :

za

with

Ek : the number of edges (NiXt) in the k-ih subgraph

: the product of the weights in the Ze-th subgraph without
f h d ( i V ) h i h h b d i

iJi) p g gp
the weights of the edges (iV^), which have been reversed to get unit
value.

This is the fa mous gain formula of signal-flow graphs by Mason [7],
well known to Systems analysts not only in physical sciences but also
in économies, opérations research and statistics [8].
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