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ON THE CONNECTION BETWEEN THE THEORY
OF SIGNAL FLOW GRAPHS
AND THE THEORY OF DIRECTED GRAPHS

par J. NiepereicuroOLZ (1)

Résumé. — La représentation des systémes linéaires par des graphes de transfert de
Mason [7] était complétée par le développement des graphes de transfert de Coates [5) pour
lesquels Desoer [6] a démontré Uoptimalité de la fonction de transfert de Coates. Ces deux
types de graphes de transfert peuvent étre combinés par le concept des N-graphes de
Chow et Cassignol [3]. L'article suivant démontre la connezion de ces trois types de
graphes de transfert avec les graphes matriciels linéaires et finalement avec les bipartitions
des graphes de la théorie générale des graphes.

1. Introduction

A square matrix of the order n A = [a;;] can always be represented by
a flow graph in the following way :

A node k (k = 1(1)n) is assigned to each row (or column)and an arc
(t,7) 1s directed node from i to node j with the associated weight a;; (a;; 7 0).

Using the notation of the digraph theory we introduce the three-tuple
D(V, A, f) as a flow graph were V is a node-set, A a set of arcs or directed
edges and f a mapping function from A to the complex field with f((z, j))
= ay; for all 7, j, € V [1]. For the development of the unifying concept of
matrix graphs some further definitions of the theory of directed and
undirected graphs need to be introduced :

An arc (i, j) is positively incident with its initial node ¢ and negatively
incident with its terminal node j. The positive degree of ¢ p* (i) is defined
as the number of arcs that are positively incident with node ¢, analogously
the negative degree p~ (i) is the number of arcs having i as terminal node.
For an undirected graph G(V, E, f) the degree of node ¢ p(z) indicates the
number of edges incident with i. A simple node of G is a node joined by

(1) Ingénieur en chef, Centre de calcul & I'université de Karlsruhe, département R.O.
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only one edge, whereas an isolated node is a node joined by no edges.
A simple graph in our sense contains only simple nodes. This is not the
definition commonly used in graph theory where a simple graph is a graph
having no loops and no parallel edges.

A digraph D is regular of degree k or k-regular if p* (i) = p~(i) = k
for all € V. An undirected graph G is regular of degree kif p(:) = k for
all : € V. A spanning subgraph of D is a subgraph with the same node-set
as D and a m-factor of D is a regular subgraph of degree m. A matching
subgraph of G is a spanning subgraph of G that is regular of degree one.
It forms a simple graph.

An undirected graph B(Vy, V5, E’, f') is said to be a bipartite graph
if its nodes can be partioned into two disjoint node-sets Vi, ¥} in such
a way that an edge (i, j') connects node i’ € V}. with node j’ € V]
A directed bipartite graph D(V{, V3, A’, ') is defined analogously with
the additional characteristic that the arc-set A’ can be classified into
two groups, one directed from V| to V4 and another from V} to V7.

If B(Vi, V3, E’, ') corresponds to a flow graph D(V, A, f), then a
subgraph S, of D is an n-factor if the corresponding subgraph Sz of Sp
in B is a regular graph of degree n and a subgraph Sp, of D is a 1-factor
or connection [6] if the corresponding subgraph Sy of Sp in Bis a matching
subgraph.

A matrix can always be associated directly with a bipartite graph and
a flow graph D(V, A, f) always corresponds to a bipartite graph B(V7, V3,
E’, f) in the following way : To the node-set V of D one constructs a
one-to-one correspondence to V3 with V| = V for each edge (i, j') or

(7", V') if (i, /) € A with f((', 1) = (7, ¥')) = (5 1)) [8].

2. Matrix graphs
2.1 Conventions

A matrix can be represented by a matrix graph in the following way :
a) The rows and columns of the matrix are represented by nodes.

The column-nodes are placed in one level and the row-nodes in another
level below of this.

b) Each matrix element a;;(a;; 7 0) is represented by the weight of an
edge connecting the i-th row-node with the j-th column-node.

This matrix graph actually forms a bipartite graph [4].

We now introduce internal nodes which are nodes in a level between
the column- and the row-level. A cross-point is an intersection of two
edges. It is always possible to deform a graph in such a way that a cross-
point is formed by only two edges, what we call a binary cross-point.

Using the well known addition rule respectively multiplication rule

for the weights of parallel respectively serial edges, internal nodes can be
eliminated [7].
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2.2 Determinants

The determinant of a square matrix A = [q;;] of order n is given by
det A =) P in ] iz 1)
(i} k=1

with the permutation symbol
P imy=(— 1

where r is the number of transpositions in the permutation {]}ofthe first n
integers from their natural order. The case of no transposition corresponds
to the simple graph in figure 1.1.
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Figure 1. — Simple graphs of transpositions as bipartite graphs

The case of one transposition with

1
(— 1) a3 oo Qg +1,k%,k+1 *+~ Onn

corresponds to the simple graph with one binary cross-point of figure 1.2.
We notice that the number of transpositions in the permutation {j}
equals the number of binary cross-points in the equivalent simple graph.

Now we can state the following rules for the evaluation of the deter-
minant of a square matrix :

a) Design the corresponding matrix graph.

b) Design all possible simple subgraphs of the matrix graph containing
the whole node-set V of the matrix graph.

¢) Evaluate the determinant using the following relation :

det A = (—1) %~ P, 2)
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with
P, : the product of the weights associated to all the edges of the
simple subgraph k. The summation involves all possible subgraphs.

C; : the sum of the weights of the cross-points of the simple subgraph k.
The weight of a cross-point is given by C, (e) where e is the number of
edges at this cross-point.

2.3 Simultaneous Linear Algebraic Equations

We turn now to a set of n linear algebraic equations in n 4 1 variables

2z =0 , i=i()n ®)
j=0
with
z; : an unknown variable, i = 1(1)n, i #
z; : a known independent variable.

The gain formula for (3) is given by

R AN T BT I YR
X (— O%Py()

k
with
P,(7) : the product of the weight associated to all the edges of the
simple subgraph k after the exclusion of column-node i of the original
matrix graph.

An extended proof of (4) is given in [10]. Now we are prepared to deal
with the Null-node graphs.

3. Null-node graphs

We can convert a matrix graph into a Null-node graph by the following
steps :

a) The column-nodes of a matrix graph become the variables z,,
Zyy +ey T, Of the matrix equation AX = N.

b) The row-nodes of a matrix graph become the n null-variables NNV,
of the right hand side of the matrix equation.

The solution of (3) can be obtained by N-graphs using the following
relation :

2 (_gyik 2 (—VOPE)
Y (— )P, (z,)

(5)

Tk
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with

7, : a known variable

P,(z;) : the product of the weights associated to all the edges of the
r-th subgraph of the Null-node graph were node z; and all edges incident
with it are deleted. All nodes must be simple.

With the result of the Null-node graph gain formula (5) we turn to the
development of the Coates’ gain formula for flow graphs.

4. Flow Graphs

For the conversion of an Null-node graph with n null-nodes and
n + 1 variables into a flow graph with no null-nodes, we take as a source-
node for instance z, and coincide the other nodes in pairs (N; z;), t = 1(1)n,
equivalent with the connection of edges of unit value directed from
node N; to node z;. The gain formula (5) for z, yields the following
relation [10] :

L ()TRGE)
o 2 (—1)TP,(F)

l 8

(7)

8

with
P,(z,) : the subgraph with node z, devoid of all incident edges and
all other nodes having exactly one incident edge.

The conversion of these subgraphs to flow graphs by the addition of
an unit edge yields one source-node z, and one sink-node z, only, while
exactly one arc is positively incident and negatively incident with each
other node. The subgraphs of the numerator in (7) yield the one-connec-
tions of Desoer [6] of the corresponding flow graph, while the subgraphs
of the denominator yield the connections of the flow graph with the source-
node not deleted.

We can show the following equivalence [10] :

If C, is even (0odd) then the number of loops I, in the corresponding
r-th subgraph in the numerator is also even (0odd) and if n-C, is even
(odd) the number of loops I, in the corresponding m-th subgraph in the
denominator is even (odd).

Using this correspondence we get the Coates, gain formula for flow

graphs :
o 2 (=1D"C(Com)
T = - (8)
T Y (—1)™ Cu(Go)

with

C.(Gy-,) : the product of the weights associated to all the arcs of the
r-th one-connection of the numerators transformation of the N-graph
formula to a flow graph.
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C,.(Gy) : the product of the weights associated to all the arcs of the
m-th connection of the denominators transformation of the N-graph
formula to a flow graph.

With this result we turn to the Mason-gain formula for signal-flow
graphs.

5. Signal-Flow Graphs

A flow graph can be transformed to a signal-flow graph by the follo-
wing steps [2] :

a) Add a weight of 1 to the weight of each existing self-loop.

b) Add a self-loop with a weight of 1 to each node devoid of a self-
loop except the source-node.

¢) Break the source-node into n source-nodes. Denote them by the
weights of the arcs positively incident with the old source-node. Multiply
these weights by their negative reciprocals to get the new weights of the
arcs positively incident with the n source-nodes.

It is also possible to develop a signal-flow graph and the Mason-gain
formula from the N-graph gain formula after a rearrangement of the set
of n independent equations in n -+ 1 variables in such a way that all
edges (N;z;), t = 1(1)n are verified with a weight of (— 1), which is always
possible [4]. The N-graph gain formula yields the following relation [10] :

2 (— ) E Py,
T Y (TP,

(9)

‘zﬂ
Zg

with
E, : the number of edges (N;z;) in the k-th subgraph

Pi(z,;) : the product of the weights in the k-th subgraph without
the weights of the edges (IViz;), which have been reversed to get unit
value.

This is the famous gain formula of signal-flow graphs by Mason [7],
well known to systems analysts not only in physical sciences but also
in economics, operations research and statistics [8].
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