An admissible synthesis for control systems on differentiable manifolds
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 5 (1971) no. R1, p. 73-104
@article{M2AN_1971__5_1_73_0,
     author = {Miric\u a, Stefan},
     title = {An admissible synthesis for control systems on differentiable manifolds},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {5},
     number = {R1},
     year = {1971},
     pages = {73-104},
     zbl = {0231.93017},
     mrnumber = {289183},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1971__5_1_73_0}
}
Mirică, Stefan. An admissible synthesis for control systems on differentiable manifolds. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 5 (1971) no. R1, pp. 73-104. http://www.numdam.org/item/M2AN_1971__5_1_73_0/

[1] G. St. Jones and A. Strauss, « An example of optimal control », S I A M Review, vol. 10, 1, 1968, pp. 25-55. | MR 239867 | Zbl 0192.51701

[2] B. E. Lee and L. Markus, Foundations of optimal control theory, , Willey, N.Y., 1967, pp. 446-454. | MR 220537 | Zbl 0159.13201

[3] St. Miricà, « On the admissible synthesis in optimal control theory and differential games », J S.I.A.M. Control, vol. 7, 2, 1969, pp. 292-315. | MR 253760 | Zbl 0182.48502

[4] V. G. Boltyanskii, « Mathematical Methods of Optimal Control », Izd, Nauka,Moscow, 1966 (Russian). | MR 207415

[5] V. G. Boltyanskii, « Sufficient conditions for optimality and the justification of the dynamic programming method », J. S.I.A.M. Control, vol. 4, 2, 1966,pp. 326-361. | MR 197205 | Zbl 0143.32004

[6] L.D. Berkovitz, « Necessary conditions for optimal strategies in a class of differential games and control problems », J. S.I.A.M. Control, vol. 5, 1, 1967, pp. 1-24. | MR 209027 | Zbl 0156.10102

[7] L.D. Berkovitz, « Variational methods in problems of control and Programming », J . Math. Annal, and Appl., vol. 3, 1, 1961, pp. 145-169. | MR 139030 | Zbl 0100.31005

[8] R. Abraham and J. Marsden, Foundations of Mechanics, Benjamin, N.Y., 1967. | Zbl 0158.42901

[9] R. Abraham and J. Robbin, Transversal Mappings and Flow, Benjamin, N. Y., 1967. | MR 240836 | Zbl 0171.44404

[10] C. Godbillon, Géométrie Différentielle et Mécanique Analytique, Paris, Hermann, 1969. | MR 242081 | Zbl 0174.24602

[11] S. Lang, Introduction to Differentiable Manifolds, Interscience, New York, 1962. | MR 155257 | Zbl 0103.15101

[12] F. Albrecht, « Control vector fields on mannifolds and attainability », Lectures Notes in Operations Research and Mathematical Economies, vol. 12, Springer-Verlag, 1969, pp. 293-302. | MR 324507 | Zbl 0192.53101

[13] R. Bellman, Dynamic Programming, Princeton, Univ. Press, 1957. | MR 90477 | Zbl 0077.13605

[14] L. S. Pontryagin, « Smooth manifolds and its Applications in the theory of homotopy », Trud.Math. Inst. im. V.A, Steklova, Moscow, 1965, T. LX, pp. 1-24(Russian). | MR 115178

[15] L. S. Pontryagin, Ordinary Differential Equations, Addison-Wesley, Reading, Massachusets, 1962. | MR 140742 | Zbl 0112.05502

[16] G. Sansone, Equazioni differenziali nel Campo Reale, Bologna, 1948. | JFM 67.0306.01 | Zbl 0039.30901

[17] R. Isaacs, Differential Games, John Willey, N.Y., 1965.