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CONFORMING AND NONGONFORMING
FINITE ELEMENT METHODS FOR SOLVING

THE STATIONARY STOKES

EQUATIONS I

par M. CROUZEIX (*) and P.-A. RAVIART (*)

Communiqué par P.-A. RAVIART

Abstract. — The paper is devoted to a gênerai finite element approximation ofthe solution
of the Stokes équations for an incompressible viscous fluid, Both conforming and nonconfor-
ming finite element methods are studied and various examples of simplicial éléments well
suitedfor the numerical treatment of the incompressibility condition are given. Optimal error
estimâtes are derived in the energy norm and in the L2-norm.

1. INTRODUCTION

Let Q be a bounded domain of RN (N=2 or 3) with boundary I \ We
consider the stationary Stokes problem for an incompressible viscous fluid
confined in ù : Find functions u = (uu ..., uN) and/? defined over £2 such that

— vAw + grad p = ƒ in Q3

(1.1) d ivw-OinQ,

u = 0 on r ,

where u is the fluid velocity, p is the pressure, f are the body forces per unit
mass and v > 0 is the dynamic viscosity.

This paper is devoted to the numerical approximation of problem (1.1)
by finite element methods using triangular éléments (N = 2) or tetrahedral
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3 4 M. CROUZEIX ET P. A. RAVIART

éléments (N = 3). Clearly, the main difficulty stems from the numerical
treatment of the incompressibility condition div u = 0. Because of this addi-
tional constraint, and except in some special cases, standard finite éléments as
those described in Zienkiewicz [16, Chapter 7] appear to be rather unsuitable.
Thus, it has been found worthwile to generate special finite éléments which
are well adapted to the numerical treatment of the divergence condition.

Indeed, one can construct finite element methods where the incompressi-
bility condition is exactly satisfied (cf. Fortin [8], [9]) but this leads to the use
of complex éléments of limited applicability. Thus, in this paper, we shall
construct and study finite element methods using simpler éléments where the
incompressibility condition is only approximatively satisfied.

On the other hand, we have found it very convenient to use nonconforming
finite éléments which violate the interelement continuity condition of the
velocities. Thus, we shall develop in this paper both conforming and non-
conforming finite element methods for solving the Stokes problem (1.1).

An outline of the paper is as follows. In § 2, we shall recall some standard
results on the continuous problem and we shall give a gênerai formulation of
the finite element approximation. Section 3 will be devoted to the dérivation
of gênerai error bounds for the velocity both in the energy norm and in the
L2-norm. In §§ 4 and 5, we shall give examples of conforming and nonconfor-
ming éléments, respectively. In § 6, we shall dérive gênerai error bounds for the
pressure in the L2-norm. Finally, we shall constder in § 7 the approximation of
the Stokes problem with inhomogeneous boundary conditions

(1.2) u = g on T.

For the sake of simplicity, we have confined ourselves to polyhedral domains
£1 but it is very likely that our results can be extended to the case of gênerai
curved domains by using isoparametric finite éléments, as analyzed in Ciarlet
and Raviart [6], [7], Similarly, we have not considered the effect of numerical
intégration since this effect has been already studied : see Ciarlet and Raviart [7],
Strang and Fix [15].

In a subséquent paper, we shall describe and study both direct and itérative
matrix methods for numerically finding the finite element approximation of
the Stokes problem. Finally, let us mention that all the methods and results
of this paper can be extended to some nonlinear problems. In this respect,
we refer to a forthcoming paper of Jamet and Raviart [11] where the stationary
Navier-Stokes équations are considered.
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METHODS FOR SOLVING THE STATIONARY STOKES EQUATIONS 35

2. NOTATIONS AND PRELIMINAIRES

We shall consider real-valued functions defined on Q. Let us dénote by

(2.1) («,!;)= f u(x)v(x)dx
Ja

the scalar product in L2(Q) and by

(2.2) ||t>|| = (vv)x/2

the corresponding norm. Consider also the quotient space L2(Q)/R provided
with the quotient norm

(2.3) \\v\\ = inf | | , + c| .
2 c€R 0,0

For simplicity, we shall dénote also by v any function in the class
v <E L2(ÇÏ)/R.

Given any integer m > 0, let

(2.4) Hm(Q) = { v | v <= L\Q), d*v € L2(D), |a | ^ m }

be the usual Sobolev space provided with the norm

(2-5) ^K^i^J^l
We shall need the following seminorm

/ _ \l/2

(2.6) \v\ - £ || 9^112

/n.a \ |a |=m 0,0/

In (2.4),..., (2.6), oc is a multiindex : a = (a l s . . . , aN), a4 > 0,

|a| = ax + ... + a^and 6a = 1̂ — ) ... U— 1 -

Let

r

Note that |i?| l j Q is anormover HQ(Q) which is equivalent to the H1(Q.)-normt

Let (L2(Q))N (resp. (Hm(Q))N) be the space of vector functions ï = (vl9..., %)

n°Idécembre 1973, R-3.



3 6 M. CROUZEIX ET P. A. RAVIART

with components vt in L2(Q) (resp. in Hm(Q)). The scalar product in (L2(Q))N

is given by

(2.8) (u, v) - f u(x) • v(x) âx = £ f «,(*)!>,(*) dx.

We consider the following norm and seminorm on the space (Hm(Q.))N :

\v\\ =

E |f,l2
î = l m,a /

Introducé now the space

(2.11) V - { v | v € (JïftQ))*, div ? - 0 }.

We extend the scalar product in (L2^))^ to represent the duality between
V and its dual space F'.

Let

(2.12) a(uj)= t ( ^(x)^
ij=i Ja vXj axj

be the bilinear form associated with the operator — A. A weak form of pro-
b l e m ( 1 . 1 ) i s a s f o î l o w s : Given a f u n c t î o n ƒ € V\ find f u n c t i o n s u G V and
p € L 2 ( Q ) / R s u c h t h a t

(2.13) va(u, v) + teâdpt1>) = (ƒ, v)for

or equivalently

(2.14) va(^ ») —(p, div^) - (f,ï)fo

Clearly, if (u,p) e V X L2(Q)/R is a solution of équation (2.13) (or 2.14)),
then u € V is a solution of

(2.15) va(£») = (ƒ, ï ) for ail 1 € F.

In fact, one can prove the following resuit (cf. Ladyzhenskaya [12], Lions
[13]).

Theorem 1, There exists a unique pair of functions (u,p) € V x L2(Q)jR
solution of équation (2.13). Moreover, the function tiç. V can be characterized
as the unique solution of équation (2.15).

For the sake of simplicity, we shall always assume in the sequel that D
is a polyhedral domain of RN and that ƒ belongs to the space (

Revue Française d'Automatique^ Informatique et Recherche Opérationnelle



METHODS FOR SOLVING THE STATIONARY STOKES EQUATIONS 37

In order to approximate problems (2.13) or (2.15), we first construct
a triangulation T5fc of the set Q with nondegenerate JV-simplices i£(i.e. triangles
if N = 2 or tetrahedrons if N = 3) with diameters < h. For any K € *BA, we let :

A(X) = diameter of K,

,_ t ^. p(iC) = diameter of the inscribed sphère of K,
(2.16)

,„. //(A)

y = sup

Note that, in the case N = 2, we have the estimate

sinö

where 6CK) is the smallest angle of the triangle K and 6 is the smallest angle
of the triangulation TSh. In the foliowing, we shall refer to h and er as parameters
associated with the triangulation %h.

Let k ^ 1 be a fixed integer. With any JV-simplex K € IS*,, we associate
a finite-dimensional space P K of functions defined on K and satisfying the
inclusions

(2.17) Pka PKŒ C\K\

where Pk is the space of all polynomials of degree k in the AT variables xu ...5 xN.
Next, we are given two finite-dimensional spaces Wh and W0>h<Z Wh of func-
tions vh defined on Û and such that vh\K£PK for all K € 7ih. We provide the
space Wh with the following seminorm

(2-18) Nl . = ( l hl2 Y'2
\K6TS

REMARK 1. The spaces PFh and WOth will appear in the sequel as finite-
dimensional approximations of the spaces HX(Q) and # o ( ^ ) respectively. The
inclusions Wh C Hx{ü), WOfh C HQ(Q) occur when conforming finite éléments
are used and we get \vh\h = \vh\ 1>o for all vh € FFA. But, in the gênerai case of
nonconforming finite éléments, these inclusions are no longer true and we shall
need some appropriate compatibility conditions : see Hypothesis H.2 below.

Let (Wh)
N (resp. (W0>h)

N) be the space of vector functions vh = (vlth, ...5 vNth)
with components vUh in Wh (resp. in WOth). We provide (Wh)

N with the seminorm

(2-19) h =

décembre 1973, R-3.



38 M. CROUZEIX ET P. A. RAVIART

Consider now the space OA of functions <ph defined on O and such that
<pAj K € Pk-1 for ail K€ H>h. Let us introducé the operator

div„ e Z((Wh)N; O„) n Z((HlmN; <DJ
by

(2.20) (div„ v, cp„) = £ I d i v » * ?* d * f o r a11 <P*I div »
Then, define the space

(2.21) Vh = {vh\vhe (W0,h)
N, div„ vh = 0 }.

With the bilinear form <Z(M, 1?), we associate

(2.22) a& 9) = E £ f | ^ g t dx, Î ? € (Z/1^))^ U

Notice that ah(uh, vh) = a(uh, vhl uh> vh € (JVh)
N

9 when WhC &(&). Then
the approximate problem is the following : Find a function uh € Vh such that

(2.23) wz„(4, ^ ) = (ƒ, rO for all ̂  € ^ , .

Theorem 2, Assume that \\vh\\h is a norm over WOth. Then, problem (2.23)
has a unique solution uh € Wh.

Proof. Since ||f?é||h is a norm over (WOth)
N, this result is an easy conséquence

of the Lax-Milgram Theorem.

3. GENERAL ERROR ESTIMATES FOR THE VELOCITY

Now, we want to dérive bounds for the error uh — u when the solution
« € V of (2.15) is smooth enough (For regularity properties of the solution u,
we refer to [12]). We begin with an estimate for \\uh — u\\h. We may write for
all vh € Vh

— vh9 uh — vh) = ah(uh — uyuh — vh) + ah(u — vh9 uh — vh)

and
.._, _• „ n_> _, „ \ah(uh — w, wh)\
\\uh-vh\\h^ \\u-vh\\h+ sup ' hK h > h)\

Thus, we get

(3.1) ||4-2|U<2 inf | | « - ^ + sup

Revue Française d*Automatique, Informatique et Recherche Opérationnelle



METHODS FOR SOLVING THE STATIONARY STOKES EQUATIONS 3 9

In order to evaluate the term inf \\u — vh\\h appearing in (3.1), we need
th€Vh

some approximability assumption :

Hypothesis H.l. There exists an operator

rh € Z((H2(Q)f; (Whf) H £((H2(Q) D H^f; (W0,h)
N)

uch that

(i) (3.2) divh rhv = div* v for all v € (H2(n)f;

(ii) for some integer / ^ 1

(3.3) \\rhv — v\\k ̂  Cclhm\v\m+ua for all v <E (Hm+1(Ü)f, 1 < m ^ k,

where the constant C is independent of h and er.
By (2.20), condition (3.2) is equivalent to the following property :

(3.4) I q div r^v dx = q div v dxfor all q € Pk„1 and all
JK JK

Lemma 1. Assume that Hypothesis H.l holds. Then rh € £(F fl (H2(Cï))N; Vh)
and we have the estimate

(3.5) inf \vh — v\\h < Calhm\v\m+lfÇ1 for allveVH (Hm+\Q)f, 1 ^ m ^ k,
t€V

where the constant C is independent of h and er.

Now, for estimating the term ah(uh — «, wh), wh € Vh, we assume that the
solution (u, p) of (2.13) satisfies the smoothness assumptions :

From (2.23), we obtain

Qh&h — u, wh) = - / • wh dx — ah(ut wh).
v Ja

Clearly

f*whdx~ — v Au • wh dx + grad p • wh dx
Ja Ja Ja

and, by using Green's formula on each K € TS*, we get

ƒ • wh dx = vflA(3, wh) — YJ P d i v ™h dx

K€-Gh JBK Ö « KCTSA J 9 K

n° décembre 1973, R-3.



4 0 M. CROUZEDC ET P. A. RAVIART

where n dénotes the exterior (with respect to K) unit vector normal to the
boundary dK of K. Thus, we have

a$h — v>Wh) = —7: Z pdivwhdx— £ ^

: Z L

In order to evaluate the surface intégrais which appear in (3.6) (and which
are identically zero when WOth C HQ(Q), i.e. for conforming finite element
methods), we need first some compatibility assumption.

Hypothesis H.2. We assume the following compatibility conditions :
(i) For any (N—i)-dimensional face K1 which séparâtes two N-simplices Kl9
K2 € : TS*, we

(3.7) q(vh>l — vht2)da = 0 for ail q^Pk^1 and ail vh
JK'

where vhtî is the restriction ofvh to Ku i = 1,2;

(ii) For any (N—\)-dimensional face Kf of a N-simplex K€*Çh such
that K' is a portion of the boundary T, we have

(3.8) qvhda = 0 for allq£Pk^1 and ail vh € WOjh.
JK'

REMARK 2. Clearly, Hypothesis H.2 is satisfied when Wh C H\Q) and
W0>h C ffi(Û). When Wh * Hl(Q) and W0)h <fc HX(Q)9 i.e. for nonconforming
finite element methods, Hypothesis H.2 implies that, for second order elliptic
problems, ail polynomials of degree k pass the « patch test » of Irons (cf. [1],
[10] and [15] for a more mathematical point of view) so that the right order
of convergence can be reasonably expected.

As a conséquence of Hypothesis H.2, we can prove :

Lemma 2. Assume that Hypothesis H.2 holds. Then \vh\h is a norm over
the space Wöth.

Proef. Let vh be a function of Wö>h such that ||t>A||* = 0. From (2.18),

we get -—• = 0, 1 < i < N, in each K e 1Sft. Thus, vh is constant in each N-
OXi

simplex K € "6A. Using Hypothesis H.2 (i) with q = 1, we find that vh is constant
over H. Finally, by using Hypothesis H.2 (ii), we get vh = 0.

Besides Hypothesis H.2, we need an essential technical result. Let K be
a nondegenerate JV-simplex of RN and let K' be a (N— l)-dimensional face

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



METHODS FOR SOLVING THE STÂTIONARY STOKES EQUATIONS 41

of K. Let us dénote by P^ the space of the restrictions to K' of all polynomials
of degree (jt and J{&, the projection operator from L2(K') onto P^ :

(3.9) q • JL^vàa = qvàa for all q € P^
JK' JK'

constant C > 0Lemma 3. For any integer m with 0 < m
independent of Ksuch that

(3.10)

for all 9 € tf ^iQ and all v € Hm+1(K).

Proof. Let £ be a nondegenerate iV-simplex of RN and let K ' be a (N — 1)-
dimensional face of K. Just for convenience, we shall assume that Kr and K'
have the same supporting hyperplane xN — 0. Let us dénote by

F^x-^ F(x) = Bx + b,B£ £(#*), b € RN,

an aflSne invertible mapping such that K = F(K), Kf = F{Kf), and by B ' the
(iV— 1) X (iV— 1) matrix obtained by crossing out the Nth row and the Nth

column of the N X N matrix B.

For any function ƒ defined on K(or on K'), we let : ƒ = ƒ o F. Then, we have

We may write for all 9 e H\K) and all v € Hm+i(K).

(3.11) f <p(t> — JtG^v) da = ldet(5 ') | fA cp(̂ 5 — J L | , Ï ; ) der

Consider, for fixed v 6 Hm+1(K), 0 ^ m < ^, the linear functional

A j A A i/ ^ A. ,

cp-> 9(Ü — X^o) da

which is continuous over H1^) with norm ^ ||£ — ^ | ^ | O , K '
 a n ( i which

vanishes over Po by (3.9). By the Bramble-Hilbert lemma [3] in the form given
in [5, Lemma 6], we get

(3.12) A 9(t> — JLfav) Ü — JL&v\\

n° décembre 1973, R-3.



42 M. CROUZEK ET P. A. RAVIART

for some constant ct = c^ÇK). Since Ji>^v = £ for ail v € P»,, we get as an
easy conséquence of the Bramble-Hilbert lemma (see also [5? Lemma 7]).

for some constant c2 = c2(JC). Combining (3.11),..., (3.13), weobtain

(3.14) I <p(v — Ji>K>v) du
JK' 1,K m+l,K

Since (cf. [5, formula (4.15)])

(3.15)

weget

(3.16)

v\t£ < |det (B)\~U1 \\B\l \v\ for ail vÇHl(K),

L (p(v — JL^'V) âa jdet CB') ||m+2

where
norm.

is the norm of the matrix B subordinate to the Euclidean vector

Dénote by eN the N^ vector of the canonical basis of RN. Then, the Nth

component of the vector B~xeN is given by

so that

(3.17) |det(2»')| < |det(iï) | H^"1!-

By (3.16) and (3.17), we may write

(3.18)

Since

(3.19) 11*1

da

< •

PW'

r« \\B-

p(^0

w\
m+l,K

(cf. [5, Lemma 2]), the desired inequality follows whit C == Cj^
which dépends only on K. (p(^0)m

In the sequel, we shall dénote by C or Cf various constants independent of
h and a. We are now able to dérive a bound for the error \\uh — M||A.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle
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Theorem 3, Assume that Hypotheses H.l and H.2 hold. Assume, in addition,
that the solution (u,p) ofproblem (2.13) satisfies the smoothness properties

(3.20) u € V H (Hk+\Q))N
9 p € Hk(O).

Then, problem (2.23) has a unique solution ~uh 6 Vh and we have the estimate

(3.21) \\uh-u\\h^Ccjlhk(\u\ +\p\ )

Proof. Existence and uniqueness of the solution 7ih € Vh follow from Hypo-
thesis H.2, Lemma 2 and Theorem 2. Consider now équation (3.6) : we begin
with an estimate for the term

(3-22)

Let K' be a (N — l)-dimensional face which séparâtes two iV-simpIices
KUK2€ *6*. For ƒ = 1,2, let us dénote by whti the restriction wh to Kt and
by ~ht the unit vector normal to K' and pointing out of Ku The contribution
of ̂ ' in the expression (3.22) is given by- - — _ _

du -> du ->
+

According to Hypothesis H.2 (i), we have

and we may write

du - 3M - \ ( l du «jk-i 3 M \ / - - v ,

Now let K' be a (JV—l)-dimensional face of a iV-simplex K € TSft such
that K' is a portion of the boundary F. According to Hypothesis H.2 (ii),
we have

I I *M>K' x " I * Wt. der = O,

Thus, we may write

i ow -• , ! du « fe-i öw
I -r— * VVi, U(7 = I I d\\JK' TT—

AK* on JK> \ on dn

n° décembre 1973, R-3.



4 4 M. CROUZEIX ET P. A. RAVIART

In conclusion, we get as a conséquence of Hypothesis H.2

(3.23)

' du

By using Lemma 3 with m = k — 1, we get the estimate

(3.24)
TS

cxchk \u\ IIwh\h for ail wh € (W0,hf.

Similarly, we get

(3.25)

X f pwA.nda= Z Ea | (P — Jtf^

and by Lemma 3

pwh*nàG
JOK

< c2ahk \p\ ||wh\h for ail wh € (WOihf.(3.26)

It remains to estimate the term

\p f -*
(3.27) 2 J \ P ^1V wh àx, wh € Vh.

By définition of the space Vh, we have :

(3.28) wh € Vh o j q div wh dx = 0 for ail q^Pk-1 and ail # ç 'S,,.

Thus, we may write

I p div wh âx = l (p — q) div wh âx for ail q e i 3 ^ and ail K € *&..
JK Jic

By applying [5, Theorem 5], we get the estimate

and therefore

(3.29)

min \\p-g\\ <cMK))k\p\
eP 0,K lc,K

cjf\p\ Nl»foridiv wh âx

Française dyAutomatique, Informatique et Recherche Opérationnelle
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Combining (3.6), (3.24), (3.26), (3.29), we obtain for all wh € Vh

(3.30) k & —«, wh)\ ^ C3^k(\u\ + \p\ ) \\wk\\h.

Then, the desired inequality (3.21) follows from (3.1), (3.30) and lemma 1.

REMARK 3. In the case of conforming finite element methods, the proof of
Theorem 3 reduces to the proof of inequality (3.29).

REMARK 4. When the solution (u, p) vérifies only

(3.31) u € Vr\ (Hm+1(Q)f, p € Hm(Q),

for some integer m with 1 ^ m ^ k, we similarly get the estimate

(3.32) ||MA — u\\h ^ Calhm (|«| + \p\ ).

Assume now that (3.31) holds with m = 0, i.e. (u,p) does not satisfy any
smoothness property. Then, by using the density of V f\ (3)(Q))N in V, one can
easily show that for bounded o-

(3.33) lim f»* —«|fA = 0.

We now come to an L2-estimate for the error ~uh — ~ii. To do this, we need
the following regularity property for the Stokes problem :

The mapping (<p3 x) -*"— v^9 + S r a d X i s a n

(3.34)
isomorphism from [Vf\ (H2(Q)f] x [H\Q)/R] onto (L2(CÏ))N.

Since Q is a polyhedral domain, this property holds for example when Q,
is convex.

Theorem 4. Assume that Hypotheses H.l, H.2, (3.20) and (3.34) hold. Then
we have the estimate

(3.35) \\ïch _ « | | o o ^ Ca2lhk+1 ( | « | J ; * + \P\ )•

Proof. We use and generalize to the nonconforming case the now classical
Aubin-Nitsche's duality argument. We may write

^••^0) \Uh — M|[o,Q = SUp i — -t

g€(L\Q.))N ||^||o,Q

Given ~g e (L2(Ü))N, we let (9, ^) be the solution of the Stokes problem

— vAcp + grad x ~ i iû ü ,

(3.37) div 9 = r 0 in^Ü,

9 = 0 on T.

n* décembre 1973, R-3.



46 M. CROUZEIX ET P. A. RAVIART

According to (3.34), we have ç e Vf) (H2(Q))N, % € H\QL) and

(3.38) i
2,Q

By using Green's formula over each K€ 7?^ we get

(wft — 5,1) = — v £ («A — «)*A$dx

+ E («* —

(3.39) =vaA(wA — 5, 9)— E { | xdiv(wA —«)

Combining (3.6) and (3.37), we obtain for ail

(wh — M, g) = vûth(«fc — M̂  <p — çfc)

(3.40)

— E 1 Lpdiv9hdx+
K€l5h K JK JE

— M) dx

Let us consider j&rst the expression

Using Hypothesis H.2, we may write as in the proof of theorem 3

K€-Çh JdK Vit K€lSh K-cdKJK' \ d W Ö « /

By using Lemma 3 with m = k — 1, we get for all

9» - .
(3.41)

Consider now

Française d'Automatique, Informatique et Recherche Opérationnelle
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Using again Hypothesis H.2, we may write

47

j _• _> 0 9 j V"1 v™1 j >-* -• ƒ 8 9 fc—1 ôcp

and therefore by using Lemma 3 with m = 0

(3.42) — u\\

Similarly, we can prove

(3.43)

1dc7

(3.44)

c3aA* |/?| ! 9A — 9 ! for all 9* € I
fc.a ft

h 1.O

f - -

y f . __ ^

Finally, we want to estimate

V f
2 J /? div 9A dx and

Since 9 € F, we get for all <pA € 7A (cf. (3.28))

f j . - j r J . - - r . - ^

I j? div 9A dx = I p div (9ft — 9) dx = 1 (p — q) div (cp/, — 9) *

for all q € P4_ 1 and all K € T5A, and therefore

SA 1

f^di
JK

p div 9A dx c5 inf ||/? —

Thus, we obtain

(3.45) E f Pdidiv <Qu dx all 9,,

JK

On the other hand,

= I (X — ?) div («& — «) f o r - i and all

n° décembre 1973, R-3.
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so that

JL X div (uh — u) dx 7 inf \\x — q\\ \uh— w|
q€Po 0,K ltK

sh\l\ |«* — « |
1K 1K

and therefore

(3.46)
KelSh JK

X div (uh — u) dx cBh\\uh — u\\ \x\ •

Now, combining (3.40),..., (3.46), we obtain

(3.47) \(uk-u,g)\ < c9 { \\uh-u\\ Jnf ||9-<P*|
*• h <Ph€Vh h

h 2 , Q 1,Q

1 +H

Then, applying Lemma 1 and Theorem 3 gives

(3.48) \(uh-u,g)\<clov
2îhk+1(\U\ +\p\ |$|

fc+1,0 Jfc,Q 2,Q

The conclusion folîows from (3.36), (3.38) and (3.48).

4. APPLICATIONS I : CONFORMING FINITE ELEMENTS

Let us recall some gênerai définitions [5], Let iT be a iV-simplex belonging
to TSft with vertices aitK, 1 ̂  / < N + 1; we dénote by Xf(x) = X; , ^ ) ,
1 < i < iV + 1? the barycentric coordinates of a point XÇLF? with respect to
the vertices of JST. Let HK = {bî)K}t*l x be a set of M distinct points of ̂ T. We
shall say that the set S^ is PK-unisolvent if the Lagrange interpolation problem :
«Find p €PK such that p(bi)K) = af, 1 < / ^ M» has a unique solution
for any given set { af }J1 j of real numbers. If HK is P^-unisolvent, we dénote

t,K> 1 < i < M, the basis functions over the set K (i.e. /?it& € P
j M)

We shall consider now examples of conforming finite element methods
corresponding to the cases k — 1, 2, 3.

EXAMPLE 1. Just for simplicity, we shall restrict ourselves to the case N = 2
Dénote by a0%K the midpoint of the side [aîfK, aJ7K], 1 ̂  i < j < 3. Then,
as is well knownS^ = { aitK } U { aijiK } is a P2"u n i s°lv e n t s e t-

1<<3 ' Ki<j<3
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