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CONFORMING AND NONCONFORMING
FINITE ELEMENT METHODS FOR SOLVING
THE STATIONARY STOKES
EQUATIONS I

par M. Crouzeix (1) and P.-A. RAVIART (1)

Communiqué par P.-A. RAVIART

Abstract. — The paper is devoted to a general finite element approximation of the solution
of the Stokes equations for an incompressible viscous fluid. Both conforming and nonconfor-
ming finite element methods are studied and various examples of simplicial elements well
suited for the numerical treatment of the incompressibility condition are given. Optimal error
estimates are derived in the energy norm and in the L*-norm.

1. INTRODUCTION

Let Q be a bounded domain of RY (N = 2 or 3) with boundary I'. We
consider the stationary Stokes problem for an incompressible viscous fluid
confined in Q : Find functions % = (u;, ..., #y) and p defined over  such that

— vAu + grad pﬂ=}in Q,
a.n dive=0inQ,

where 7 is the fluid velocity, p is the pressure, f are the body forces per unit
mass and v > 0 is the dynamic viscosity.

This paper is devoted to the numerical approximation of problem (1.1)
by finite element methods using triangular elements (N = 2) or tetrahedral

(1) Analyse Numérique, T. 55 Université de Paris-VI.
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34 M. CROUZEIX ET P. A. RAVIART

elements (N = 3). Clearly, the main difficulty stems from the numerical
treatment of the incompressibility condition div % = 0. Because of this addi-
tional constraint, and except in some special cases, standard finite elements as
those described in Zienkiewicz [16, Chapter 7] appear to be rather unsuitable.
Thus, it has been found worthwile to generate special finite elements which
are well adapted to the numerical treatment of the divergence condition.

Indeed, one can construct finite element methods where the incompressi-
bility condition is exactly satisfied (cf. Fortin [8], [9]) but this leads to the use
of complex elements of limited applicability. Thus, in this paper, we shall
construct and study finite element methods using simpler elements where the
incompressibility condition is only approximatively satisfied.

On the other hand, we have found it very convenient to use nonconforming
finite elements which violate the interelement continuity condition of the
velocities. Thus, we shall develop in this paper both conforming and non-
conforming finite element methods for solving the Stokes problem (1.1).

An outline of the paper is as follows. In § 2, we shall recall some standard
results on the continuous problem and we shall give a general formulation of
the finite element approximation. Section 3 will be devoted to the derivation
of general error bounds for the velocity both in the energy norm and in the
L2-norm. In §§ 4 and 5, we shall give examples of conforming and nonconfor-
ming elements, respectively. In § 6, we shall derive general error bounds for the
pressure in the L2-norm. Finally, we shall consider in § 7 the approximation of
the Stokes problem with inhomogeneous boundary conditions

(1.2) uw=gonT.

For the sake of simplicity, we have confined ourselves to polyhedral domains
Q but it is very likely that our results can be extended to the case of general
curved domains by using isoparametric finite elements, as analyzed in Ciarlet
and Raviart [6], [7). Similarly, we have not considered the effect of numerical
integration since this effect has been already studied : see Ciarlet and Raviart [7],
Strang and Fix [15].

In a subsequent paper, we shall describe and study both direct and iterative
matrix methods for numerically finding the finite element approximation of
the Stokes problem. Finally, let us mention that all the methods and results
of this paper can be extended to some nonlinear problems. In this respect,
we refer to a forthcoming paper of Jamet and Raviart [11] where the stationary
Navier-Stokes equations are considered.
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METHODS FOR SOLVING THE STATIONARY STOKES EQUATIONS 35

2. NOTATIONS AND PRELIMINARIES

We shall consider real-valued functions defined on Q. Let us denote by

2.1) (¥, v) = f u(x)v(x) dx
Q

the scalar product in L2(Q) and by

(2.2) lol = @»)'?
05Q

the corresponding norm. Consider also the quotient space L2(Q)/R provided
with the quotient norm

2.3) lo  =iof o+

L¥*Q)/R c€R 0,Q

For simplicity, we shall denote also by v any function in the class
v € L*(Q)/R.

Given any integer m > 0, let
24 H™Q) = {v|veL*Q), 3% e L*Q), |a| < m}

be the usual Sobolev space provided with the norm
1/2
@9 bl = (2 1, )
mQ la[<m 0,0
We shall need the following seminorm
1/2
26 b, = 2 el )

In (24), ..., (2.6), « is a multiindex : « = (24, ..., ay), &; = 0,

« a al a ayN
|“| = o + .o + oy and a = (a_‘XI) con (57) .

Let
@7 Ho@) = {v|p e H'@), 0| =0}.

Note that [v|,,q is a norm over H(Q) whichis equivalent to the H'(Q)-norm.
Let (L*(Q))" (resp. (H™(Q))) be the space of vector functions v = (vy, ..., vy)

n°;décembre 1973, R-3.



36 M. CROUZEIX ET P. A. RAVIART

with components v; in L%(Q) (resp. in H™(Q)). The scalar product in (L*(Q))¥
is given by

N
(2.8) (%,7) = f Ux) - D(x) dx = Y. f u,(x)v,(x) dx.
o i=1Ja
We consider the following norm and seminorm on the space (H™(Q))" :

N 1/2
29 i = (e ) "
N 1/2
(2.10) o] = (Z i) )
Q m,Q

m, i=1
Introduce now the space
(2.11) V={0|veHyQ)",dive=0}.

We extend the scalar product in (L*(Q))" to represent the duality between
V and its dual space V.

Let
(2.12) a(u, 0) = Z f ax'( ) (x) dx, u, v € (HY(Q))",

i,j=1

be the bilinear form associated with the operator — A. A weak form of pro-
blem (1.1) is as follows : Given a function f€ V’, find functions w€ V and
p € L*(Q)/R such that

(2.13) va(u, ) + (grad p, ) = (f, 3) for all 3 € (HXQ))"
or equivalently
(2.14) va(@, 7) — (p, div D) = (f, 3) for all b € (HI(Q)".

Clearly, if (, p) € V x L*(Q)/R is a solution of equation (2.13) (or 2.14)),
then % € V is a solution of

(2.15) va(, ) = (f, 9) for alld € V.
In fact, one can prove the following result (cf. Ladyzhenskaya [12], Lions
[13]).

Theorem 1. There exists a unique pair of functions (u, p) € V x L*(Q)/R
solution of equation (2.13). Moreover, the function 1 € V can be characterized
as the unique solution of equation (2.15).

For the sake of simplicity, we shall always assume in the sequel that Q
is a polyhedral domain of RY and that f belongs to the space (L*(Q2))".
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METHODS FOR SOLVING THE STATIONARY STOKES EQUATIONS 37

In order to approximate_ problems (2.13) or (2.15), we first construct
a triangulation G, of the set Q with nondegenerate N-simplices K (i.e. triangles
if N = 2 or tetrahedrons if N = 3) with diameters < 4. For any K € G, we let :

h(K) = diameter of K,

o(K) = diameter of the inscribed sphere of K,

h(K)
o®y ° = Sup oK),

(2.16)
o(K) =

Note that, in the case N = 2, we have the estimate

2 Lo 2
simn0(K) ° s’

o(K) <

where 0(K) is the smallest angle of the triangle K and 0 is the smallest angle
of the triangulation G,. In the following, we shall refer to /4 and o as parameters
associated with the triangulation G,.

Let k > 1 be a fixed integer. With any N-simplex K € G,, we associate
a finite-dimensional space Py of functions defined on K and satisfying the
inclusions

(2.17) P,C PyC CY(K),

where P, is the space of all polynomials of degree k in the N variables x,, ..., Xy.
Next, we are given two finite-dimensional spaces W, and W, , C W, of func-
tions v, defined on Q and such that v,| x € Py for all X € G,. We provide the
space W, with the following seminorm

1/2
(2.18) thllh=( > lol? )
KE€T 1,K

h

ReMARK 1. The spaces W, and W, , will appear in the sequel as finite-
dimensional approximations of the spaces H'(Q) and H,(Q) respectively. The
inclusions W, C H(Q), W, , € H(Q) occur when conforming finite elements
are used and we get |0, = |v4]1,q for all v, € W, But, in the general case of
nonconforming finite elements, these inclusions are no longer true and we shall
need some appropriate compatibility conditions : see Hypothesis H.2 below.

Let (W,)" (tesp. (W,,)") be the space of vector functions v, = (v 4, ..., Ux,4)
with components v; ; in W), (resp. in W, ;). We provide (W,)" with the seminorm

. N 1/2
21) ol = ( 3 Tl

n° décembre 1973, R-3.



38 M. CROUZEIX ET P. A. RAVIART

Consider now the space @, of functions ¢, defined on Q and such that
®n k € Pi—, for all K € G,. Let us introduce the operator

div, € S(W)"; @) N L(HQ)Y; D))

by
(2.20) (div, D, ) = 2. f div 3 ¢, dx for all ¢, €D,
K€E€Br VK
Then, define the space
(2.21) V= {0, | o € Wo )", div, 5, =0}.

With the bilinear form a(u, v), we associate

N
222 a@d)= Y g“ g”‘d i, v € (HYQ)" U (W)Y
K€EBh i,j=1 X

Notice that a,(#, v,) = a(ity, 0y), , 0, € (W,)", when W, HYQ). Then
the approximate problem is the following : Find a function w, € V,, such that

(2.23) vay (i D) = (f, 3,) for all 3, € W,
Theorem 2. Assume that ||v,)|, is a norm over W, ,. Then, problem (2.23)
has a unique solution u, € W,

Proof. Since |7, is a norm over (W, ,)", this result is an easy consequence
of the Lax-Milgram Theorem.

3. GENERAL ERROR ESTIMATES FOR THE VELOCITY

Now, we want to derive bounds for the error %, — % when the solution
u € V of (2.15) is smooth enough (For regularity properties of the solution %,
we refer to [12]). We begin with an estimate for ||, — u/|,. We may write for
all v, €V,

@ty — Dy, iy — D) = @yt — U, Uy — 0y) + (i — Dy, Uy, — Dy)
and
a,(u, — U, W)
[ — 5l < [+ sup 1550
WAEVH ” Wh” h
Thus, we get

(3.1) i, — 2, < 2 mf lu— il + sup |an(tly — 14, Wy)|
VA€V ”wh”h

Revue Frangaise d’ Automatique, Informatique et Recherche Opérationnelle



METHODS FOR SOLVING THE STATIONARY STOKES EQUATIONS 39

In order to evaluate the term 3mf |# — | appearing in (3.1), we need
hEVA

some approximability assumption :

Hypothesis H.1. There exists an operator

rw € L(H Q)" (W)™) N E(H>Q) N HyQ)Y; (Wo )™

uch that
o (3.2 div, rp = div, v for all v € (H*(Q))";
(ii) for some integer 1 > 1
(3.3)  |[ro—3|s < Co'h™|D|ps1,q forall o € (H™ Q)Y 1 < m < k,
where the constant C is independent of h and o.

By (2.20), condition (3.2) is equivalent to the following property :

(3.49) f g div r,p dx = f g div? dx for all g € P,_, and all K € 6,.
K K
Lemma 1. Assume that Hypothesis H.1 holds. Then r, € C(V N (H*Q)Y; V)
and we have the estimate
(3.5 inf |5, — |, < CSH"[O]ms1,0for aloe VN (H™ Q)Y 1 < m< k,
DAEVA

where the constant C is independent of h and o.

Now, for estimating the term a,(, — %, w;), W, € V;, we assume that the
solution (u, p) of (2.13) satisfies the smoothness assumptions :

uevVnHQ), pe H(Q).
From (2.23), we obtain
oy — 7 = 5 [ T dx — @ .
Clearly
[ Fodaxm— [ i, ax 4+ [ gad p iy ax
Q Q Q

and, by using Green’s formula on each K € G,, we get

J‘ f‘ ‘T’h dx = Vah(;, ;&h)_ Z f Y4 diV ;V'h dx
Q K

K€eTh

a—. - -> -
—v 2 J‘axa—:-w,,dc—}— Z J‘pr,,-ndc

KETBx K€ETGh

n°® décembre 1973, R-3.



40 M. CROUZEIX ET P. A. RAVIART

where 7 denotes the exterior (with respect to K) unit vector normal to the
boundary oK of K. Thus, we have
U -
f ’_zf . th'

- - - 1 . -
a (U, — u, wp) = — — Z prdlvw,,dx— Z o 1

(3.6) V K€k K€Gh

l e -
+ - z f pw, + nde
V K€Gy ¥ Ok

In order to evaluate the surface integrals which appear in (3.6) (and which

are identically zero when W, , C Hy(Q), i.e. for conforming finite element
methods), we need first some compatibility assumption.

Hypothesis H.2. We assume the following compatibility conditions :

(i) For any (N — 1)-dimensional face K' which separates two N-simplices K,,
K, € : G, we have

3.7 f q(p,1 — V,,2)do =0 for all g € Py_4 and all v, € W),
K

where v, ; is the restriction of v, to K;, i = 1, 2;

(ii) For any (N — 1)-dimensional face K' of a N-simplex K€ G, such
that K' is a portion of the boundary T', we have

(3.8) J quide = 0 for all g € P,_, and all v, € Wy .
X

ReMARK 2. Clearly, Hypothesis H.2 is satisfied when W, C H'(Q) and
Wo., C Ho(Q). When W, & H'(Q)and W, , & H'(Q),i.e. for nonconforming
finite element methods, Hypothesis H.2 implies that, for second order elliptic
problems, all polynomials of degree k pass the « patch test » of Irons (cf. [1],
[10] and [15] for a more mathematical point of view) so that the right order
of convergence can be reasonably expected.

As a consequence of Hypothesis H.2, we can prove :

Lemma 2. Assume that Hypothesis H.2 holds. Then ||v,||, is a norm over
the space W, .

Proof. Let v, be a function of W, such that |v,], =0. From (2.18),
ov,
Ax;
simplex K € G,,. Using Hypothesis H.2 (i) with ¢ = 1, we find that v, is constant
over Q. Finally, by using Hypothesis H.2 (ii), we get v, = 0.

we get =0,1< i< N, in each K € G,. Thus, v, is constant in each N-

Besides Hypothesis H.2, we need an essential technical result. Let K be
a nondegenerate N-simplex of RY and let X’ be a (N — 1)-dimensional face

Revue Frangaise d’ Automatique, Informatique et Recherche Opérationnelle



METHODS FOR SOLVING THE STATIONARY STOKES EQUATIONS 41

of K. Let us denote by P}, the space of the restrictions to X’ of all polynomials
of degree . and (% the projection operator from L*(K’) onto P, :

(3.9 f q - Mgvde = f gude for all g € P,,.
K’ K’

Lemma 3. For any integer m with 0 < m < ., there exists a constant C > 0
independent of K such that

(3.10) } L, 90 — Mv) do | < CoB)HE)™ [o] o]

m+1,K

for all o € HY(K) and all v € H™*'(K).

Proof. Let Kbea nondegenerate N-simplex of R and let K'bea (N— 12-
dimensional face of K. Just for convenience, we shall assume that K’ and K’
have the same supporting hyperplane xy = 0. Let us denote by
F:x—F(x)= Bx + b, BelL(RY), beR",

an affine invertible mapping such that K = F(Ie), K’ = F(IA( "), and by B’ the
(N —1) x (N — 1) matrix obtained by crossing out the N*® row and the N
column of the N X N matrix B.

For any function f defined on K(oron K’), we let : f = fo F. Then, we have
'AMJ;'U = JK)I%('{J\.
We may write for all ¢ € H'(K) and all » € H"*}(K).
(3.11) f ¢(v — Migv) do = |det (B")] f , 6@ — M) do
K’ K’
Consider, for fixed v € H "'“(Ié), 0 < m < p, the linear functional
A A A A
Q—> J; ot — MAv) do
&

which is continuous over H(X) with norm < 1o — J(;‘é,f;” 0,8 and which
vanishes over P, by (3.9). By the Bramble-Hilbert lemma [3] in the form given
in [5, Lemma 6], we get

A
< ¢ 9]

(3.12) 1 f 3G — MokD) do
s,

oAy,
|6 —AeR0]
1,K 0,K’

n°® décembre 1973, R-3.



42 M. CROUZEIX ET P. A. RAVIART

for some constant ¢; = cl(}(). Since .JK:Z,?J = p for all D € P,, we get as an
easy consequence of the Bramble-Hilbert lemma (see also [5, Lemma 7}).

(3.13) o — ’kv!] < e |9

for some constant ¢, = c2(Ié). Combining (3.11), ..., (3.13), we obtain

(3.14) f oo — M) do | < crep [det B)] 8] . 5] ..
K’ 1,K m+1,K

Since (cf. [5, formula (4.15)])

(3.15) [9],.4 < |det (B)]"Y* || B| |v| foranueH‘(K),
we get
(3.16)
90— M) do | < cyey [det (B)] [det (B)|7* [B|™ [l o]

where || B|| is the norm of the matrix B subordinate to the Euclidean vector
norm.

Denote by ey the N™ vector of the canonical basis of RY. Then, the N'®
component of the vector R~ ¢, is given by

(B™'ey)y = det (B') (det (B))™"
so that
(3.17) |det (B")| < |det (B)] |B7.

By (3.16) and (3.17), we may write

(3.18) . o — M) do | < cc; || B|™F? | B7Y ]cp]l . |o| .
Since
WE) yo—1n WK
(3.19) 18] < 28 151 < ‘ )
(K)
h(K)

(cf. [5, Lemma 2]), the desired inequality follows whit C = ¢;c, ——
which depends only on K. (p(K))

In the sequel, we shall denote by C or C; various constants independent of
h and o. We are now able to derive a bound for the error ||u, — /[,
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METHODS FOR SOLVING THE STATIONARY STOKES EQUATIONS 43

Theorem 3. Assume that Hypotheses H.1 and H.2 hold. Assume, in addition,
that the solution (u, p) of problem (2.13) satisfies the smoothness properties

(3.20) ne VN (HYQ), pe H(Q).

Then, problem (2.23) has a unique solution w, € V, and we have the estimate

(3.21) [ — ) < C'R(|7]  +|p| )
k Q k,Q

Proof. Existence and uniqueness of the solution %, € ¥, follow from Hypo-
thesis H.2, Lemma 2 and Theorem 2. Consider now equation (3.6) : we begin
with an estimate for the term

aﬁ - -
= w,do, w, € (WO,h)N-

3.22
( ) k€T, Jox On

Let K’ be a (N — 1)-dimensional face which separates two N-simplices
K, K, €G,. Fori=1,2, let us denote by w,; the restriction w, to K; and
by 7, the unit vector normal to K’ and pointing out of K;. The contribution
of K’ in the expression (3.22) is given by- - - - — - —

% .t - o ..
J‘K' (—871 4 Wh,l -T- ‘871; . Wh,z) dO' = . anl . S S Whlz) dO'.

According to Hypothesis H.2 (i), we have

b
fK ('A(’k la:) (Wh1—th)d°'—o WhE(Wop.) s

and we may write

ou - U - . ou k-1 ou = =
fK, (E * Wyt + 5;12 ¢ Wh,z) do = fK’ (me t/“JK' anl) * (wh,l - wh,2) do

- AV T S A
f, { (anl a—nl' . ‘vh,l _— anz —_ JK)K' a}lz Wh,2 } do.

Now let K’ be a (N — 1)-dimensional face of a N-simplex K € G, such
that K’ is a portion of the boundary I'. According to Hypothesis H.2 (ii),
we have

J’ (:MJk ! g:) Wh do = O w,, € (Wo h)N
K’

Thus, we may write

QU - ou L Ou)
f , a Wy dG = (‘—n— dK)K an) . Wh dO'.

n° décembre 1973, R-3.



44 M. CROUZEIX ET P. A. RAVIART

In conclusion, we get as a consequence of Hypothesis H.2

(3.23)

U - cu u
ZG fax an " do = KGZG xzc:axf (an Mo 71) + y do, W, € W, W'
K€Bn » K’

By using Lemma 3 with m = k — 1, we get the estimate

(B24) i > faK?-ﬁhdc

KETn

\ clchk Iﬁl ” ‘_';’h”h fOI‘ all "_;'h € (WO,h)N.
k+1,Q
Similarly, we get
3. 25)
f pwy,+nde = f (p — M pyw, - 7 do, W€ Wo",
K€ KG‘B’n K" COk

and by Lemma 3

w, + 1 dc
2 jaxp "

K€

(3.26)

< 0" |p|  ||wil, for all W, € (W, ) .
kQ
It remains to estimate the term
‘, p div w, dx, w, € V.
K€TGh
By definition of the space V,, we have :
(3.28) Wy € V<> f g div w, dx = 0 for all g € P,_, and all K€ G,.
K
Thus, we may write

f p div w, dx = f (p — q) div w, dx for all g € P,_, and all K € G,
K K

By applying [5, Theorem 5], we get the estimate
min [[p—gq| < c3(i(K))*|p|
q€Px—1 0,K k,K

and therefore

> fpdiviv,,dx

K€TGr VK

(3.29)

< c i [p!k . (|4 for all W, € ¥,

Revue Frangaise d’ Automatique, Informatique et Recherche Opérationnelle



METHODS FOR SOLVING THE STATIONARY STOKES EQUATIONS 45

Combining (3.6), (3.24), (3.26), (3.29), we obtain for all w, € ¥,
(3.30) Iah(ah —1_‘: V—‘;h)| < csch" (IZ;] + IP| ) “_]';}h”h
k+1,Q k,Q

Then, the desired inequality (3.21) follows from (3.1), (3.30) and lemma 1.

REMARK 3. In the case of conforming finite element methods, the proof of
Theorem 3 reduces to the proof of inequality (3.29).

REMARK 4. When the solution (i, p) verifies only
(3.31) ue VN H"T Q) p e H'(Q),
for some integer m with 1 < m < k, we similarly get the estimate
(3.32) %, — 2| A< co'nm (|7 + 1ol ).
m+1,Q m,Q

Assume now that (3.31) holds with m = 0, i.e. (%, p) does not satisfy any

smoothness property. Then, by using the density of ¥ N (D(Q))" in ¥, one can
casily show that for bounded ¢

(3.33) lim |, —uf, = 0.

h=0

We now come to an L2-estimate for the error %, — 7. To do this, we need
the following regularity property for the Stokes problem :
The mapping (3, y) —— vA@ - grad  is an
@39 isomorphism from [V N (H*Q))"] x [H'(Q)/R] onto (L*(Q))".
Since Q is a polyhedral domain, this property holds for example when Q

is convex.

Theorem 4. Assume that Hypotheses H.1, H.2, (3.20) and (3.34) hold. Then
we have the estimate

(3.35) ”;h__;"” < Co?prtt (W 1'23!,‘_,!_ Ipl ).
0,0 k+1,0Q EQ

»

Proof. We use and generalize to the nonconforming case the now classical
Aubin-Nitsche’s duality argument. We may write

(3.36) lon—%on = sup |, — 2, g)l.
@’ |2loa

Given g € (L*(Q))", we let (g, 3) be the solution of the Stokes problem
—VAG + grad x =2 in Q,
(3.37) div o ='0in"Q,
¢=0o0nT.

n°® décembre 1973, R-3.



46 M. CROUZEIX ET P. A. RAVIART

According to (3.34), we have ¢ € V' N (H*(Q))", x € H(Q) and
(3.38) lell,  +1d < clel -
0,0

By using Green’s formula over each K € G, we get

(?‘h—;a-g’)z_"v f ("h—“) A(de

KeBan
+ ‘z f (4, — u) » grad y dx
Bn VK

(3.39) = vayty, — 1 ) — 2, { fx y div (1, — %) dx

KeT,
- - a(; - -
+vfax(u,,—u)-%da—fal((u,,—u)-nxdc } .

Combining (3.6) and (3.37), we obtain for all g, € (W, )"

(;;h — Z"a §) = Van(ﬁh — lz 6 — 5}.)

— Z {fpdivc}’,,dx—f—f x div (i, — %) dx
KeBa

+vf Su -<p,. c—f P3y-ndo

- - a - - e
—}—vfaK(u,,——u)-égidc—faK (u,—u)-nydo } .

(3.40)

Let us consider first the expression

92"—51.(1‘7 Z

?) do.
KEGn Jok On KeBa J Ok E)n ((Ph ?)

Using Hypothesis H.2, we may write as in the proof of theorem 3

> [ Ee=-3 3 | (g,’j Ac“a") - Gu— ) do.

K€y JOK on Ke€Bs K COK

By using Lemma 3 with m = k — 1, we get for all ¢, € (W, )"

a - - - -
y [ % dc{ < cs0t [ilksr |3 — 3w

3.41
( ) KeTn oK an

Consider now

-

- - a(P
u, —u)+ = do.
KeBan aK( g ) on
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Using again Hypothesis H.2, we may write

- a0 09 dp k-1 00
Z (uh_u)'an Z Bxf (uy, — 1)~ (n Mg e do

KeGr JOK KEG: K'C

and therefore by using Lemma 3 with m = 0

z (u,,—u) a dc

KeETa

(3.42)

< exohia—] 1],

Similarly, we can prove

(3.43)
5 Jye i ido | < csoh Ipl_IG— 3] forall € Wou"
Re€Ts JOK h
Gaty | 3 [ Gy do| < cuoh—i] 1l -
| K€By JOK h 1.0

Finally, we want to estimate

> fpdiva,,dxand > fxdiv(z;,,_a)dx.
K K

KeTGa KeTGn

Since ¢ € V, we get for all 3, € ¥, (cf. (3.28))
[raviian=] pav G—Par= [ G- eGP ax

for all g € P, and all K € G,, and therefore

pdivq_;,,dx ‘S cs inf ”P‘—q” |‘15;1_5l <
K | q€Pr—1 0,K 1,K

p lq-;h_zﬁl .
K 1,K

Thus, we obtain

> fpdivzp’,,dx
K

KeTGa

(3.45)

< C6hk Iplk a ”6;,— Eé”h for all 5}, € Vh‘

On the other hand,
f y div (@, — u) dx
K

= f (x — q) div (%, — %) dx for all ¢ € P,_, and all Ke G,
K

n° décembre 1973, R-3.






