@article{M2AN_1974__8_2_119_0, author = {\v Zen\'\i \v sek, Alexander}, title = {A general theorem on triangular finite $C^{(m)}$-elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, pages = {119--127}, publisher = {Dunod}, volume = {8}, number = {R2}, year = {1974}, zbl = {0321.41003}, mrnumber = {388731}, language = {en}, url = {archive.numdam.org/item/M2AN_1974__8_2_119_0/} }
Ženíšek, Alexander. A general theorem on triangular finite $C^{(m)}$-elements. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 8 (1974) no. R2, pp. 119-127. http://archive.numdam.org/item/M2AN_1974__8_2_119_0/
[1] A refined triangular plate bending finite element Int. J. Num. Meth. Engng., 1969, 1, 101-122.
,[2] Triangular elements in the finite element method. Math. Comp., 1970, 24, 809-820. | MR 282540 | Zbl 0226.65073
and ,[3] Piecewise polynomial interpolations in the finite element method. Apl.Mat., 1973, 18, 146-160. | MR 321318 | Zbl 0305.65070
,[4] An analysis of the finite element method. Prentice-Hall Inc., Englewood Cliffs, N. J., 1973. | MR 443377 | Zbl 0356.65096
and ,[5] Interpolation polynomials on the triangle. Numer. Math., 1970, 15, 283-296. | MR 275014 | Zbl 0216.38901
,[6] Polynomial approximation on tetrahedrons in the finite element method.J. Approx. Theory, 1973, 7, 334-351. | MR 350260 | Zbl 0279.41005
,