On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers
Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, Volume 8 (1974) no. R2, pp. 129-151.
@article{M2AN_1974__8_2_129_0,
     author = {Brezzi, F.},
     title = {On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers},
     journal = {Revue fran\c{c}aise d'automatique, informatique, recherche op\'erationnelle. Analyse num\'erique},
     pages = {129--151},
     publisher = {Dunod},
     address = {Paris},
     volume = {8},
     number = {R2},
     year = {1974},
     mrnumber = {365287},
     zbl = {0338.90047},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1974__8_2_129_0/}
}
TY  - JOUR
AU  - Brezzi, F.
TI  - On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers
JO  - Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique
PY  - 1974
SP  - 129
EP  - 151
VL  - 8
IS  - R2
PB  - Dunod
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1974__8_2_129_0/
LA  - en
ID  - M2AN_1974__8_2_129_0
ER  - 
%0 Journal Article
%A Brezzi, F.
%T On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers
%J Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique
%D 1974
%P 129-151
%V 8
%N R2
%I Dunod
%C Paris
%U http://archive.numdam.org/item/M2AN_1974__8_2_129_0/
%G en
%F M2AN_1974__8_2_129_0
Brezzi, F. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, Volume 8 (1974) no. R2, pp. 129-151. http://archive.numdam.org/item/M2AN_1974__8_2_129_0/

[1] J. P. Aubin, Approximation of elliptic boundary-value problems, Wiley-New York (1972), | MR | Zbl

[2] J. P. Aubin, Cours d'optimisation, Université de Paris IX, Dauphine (1973-74).

[3] I. Babuska, Error boundfor the finite element method, Num. Math., 16,322-333, (1971). | MR | Zbl

[4] I. Babuska, The finite element method with Lagrangian multipliers, Num. Math.,20, 179-192 (1973). | MR | Zbl

[5] F. Brezzi , Sur la méthode des éléments finis hybrides pour le problème biharmonique (submitted to Num. Math). | Zbl

[6] F. Brezzi, Sur une méthode hybride pour l'approximation du problème de la torsion d'une barre élastique (to appear on Ist. Lombardo Accad. Sci Lett. Rend. A). | MR | Zbl

[7] F. Brezzi, Sur l'existence, unicité, et approximation numérique de problèmes de point de selle, C. R. Acad. Sc. Paris, Série A, 278 (18 mars 1974), 839-842, (1974). | MR | Zbl

[8] F. Brezzi and L. D. Marini, On the numerical solution ofplate bending problems by hybrid methods (to appear on Pubblicazioni del Laboratório di Analisi Numerical del C.N.R., Pavia).

[9] P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rat. Mech. Anal., 46.177-199 (1972). | MR | Zbl

[10] P. G. Ciarlet and P. A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Math. Found, of the F. E. M. (éd. by A. K. Aziz), Academic Press 1972. | MR | Zbl

[11] M. Crouzeix and P. A. Raviart, Conforming and Nonconforming Finite Element methods for Solving the Stationary Stokes Equations. I RAIRO, V-3, déc. 1973. | Numdam | MR | Zbl

[12] B. Fraeus De Veubeke, Upper and lower bounds in matrix structural analysis, AGARDograph 72, Pergamon, 1964.

[13] B. Fraeus De Veubeke, Displacements and equilibrium models in the finite element method, Stress Analysis (éd. by O. C. Zienkiewicz and G. S. Holister), chap. p, Wiley, 1964.

[14] B. Fraeus De Veubeke , Bending and Stretching of plates, Proc. Conf. Matrix Method in Structural Mech., Air Force Technical Report AFF DL-TR-66-80, Nov. 1966.

[15] B. Fraeus De Veubeke, Variational principles and the patch-test (to appear on Int. J. for Numerical Meth. in Eng.). | Zbl

[16] B. Fraeus De Veubeke and O. C. Zienkiewicz, Strain energy bounds in finite element analysis by slab analogy, Journal of Strain Analysis 2, 4, 265-271 (1967).

[17] B. M. Irons and A. Razzaque, Experience with patch-test for convergence of finite elements, The Math. Found of the F. E. M. (ed. by A. K. Aziz). Academic Press, 1972. | MR | Zbl

[18] C. Johnson, On the convergence of a Mixed Finite Element Method for Plate Bending Problems, Num. Math., 21, 43-62 (1973). | MR | Zbl

[19] C. Johnson, Convergence of another mixed finite-element method for plate bending problems, Chalmers Institute of Technology No. 1972-27. | Zbl

[20] F. Kikuci and Y. Ando, On the convergence of a mixed finite element scheme for plate bending, Nucl. Eng. and Design, 24, 357-373 (1973).

[21] Lascaux and P. Lesaint (to appear). | MR

[22] J. L. Lions and E. Magenes, Non homogeneous boundary value problems and applications, vol. 1, 2, Grundlehren B. 181,182, Springer, 1971. | Zbl

[23] B. Mercier, Numerical solution of the biharmonic problem by mixed finite elements of class C° (to appear in Boll. U.M.I. (1974)). | MR | Zbl

[24] T.H.H. Pian and P. Tong, variational principle and the convergence of a finite-element method based on assumed stresses distribution, Inst. J. Solid Structures, 5, 463-472 (1969). | Zbl

[25] T.H. H. Pian and P. Tong, Basis of finite element methods for solid continua, Int. J. for Numerical Meth. in Eng. 1, 3-28 (1969). | Zbl

[26] P.A. Raviart, Méthode des éléments finis, Cours 1972-73 à l'Université de ParisVI.

[27] P. A. Raviart and J. M. Thomas, (to appear).

[28] G. Sander, Application of the dual analysis principle, Proceedings of IUTAM, Liège, Aug. 1970.

[29] G. Sander, Application de la méthode des éléments finis à la flexion des plaques, Coll. Publ. Fac. Sc. Appl. Univ., Liège n. 15 (1969).

[30] G. Strang, Variational crimes in the finite element methods, The Math. Found.of the F.E.M. (ed. by A. K. Aziz) Academic Press (1972). | MR | Zbl

[31] G. Strang and G. Fix, An analysis of the finite éléments rnethod, Prentice Hall- New York, 1973. | MR | Zbl

[32] J. M. Thomas, (to appear).

[33] K. Yosida, Functional Analysis, Grundlehren B. 123, Springer, 1965 . | Zbl

[34] O. C. Zienkiewicz, The finite element methods in engineering science McGraw-Hill (1971). | MR | Zbl