Bramble, J. H.; Thomée, V.
Interior maximum norm estimates for some simple finite element methods
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 8 (1974) no. R2 , p. 5-18
Zbl 0301.65065 | MR 359354
URL stable : http://www.numdam.org/item?id=M2AN_1974__8_2_5_0

Bibliographie

[1] J. H. Bramble, On the convergence of difference approximations for second order uniformly elliptic operators. Numerical Solution of Field Problems in Continuum Physics. SIAM-AMS Proceedings, Vol. 2, Providence R.I. 1970, 201-209. MR 260200 | Zbl 0234.65086

[2] J. Nitsche, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal., 36 (1970), 348-355. MR 255043 | Zbl 0192.44503

[3] L. A. Oganesjan and P. A. Rukhovets, Investigation of the convergence rate of variational-difference schemes for elliptic second order equations in a two-dimensional domain with a smooth boundary. -. Vy_isl. Mat. i Mat. Fir. 9 (1969),1102-1120 (Russian). (Translation : U.S.S.R. Comput. Math, and Math. Phys.). MR 295599 | Zbl 0234.65093

[4] V. Thomée, Discrete interior Schauder estimates for elliptic difference operators. SIAM J. Numer. Anal., 5 (1968), 626-645. MR 238505 | Zbl 0176.15901

[5] V. Thomée, Approximate solution of Dirichlet's problem using approximating polygonal domains. Topics in Numerical Analysis. Edited by J. J. H. Miller. Academic Press 1973, 311-328. MR 349034 | Zbl 0276.65054

[6] V. Thomée and B. Westergren, Elliptic difference equations and interior regularity, Numer. Math. II (1968), 196-210. MR 224303 | Zbl 0159.38204