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COMPLEMENTARITY SYSTEMS
AND APPROXIMATION

OF VARIATIONAL INEQUALITIES

byU.MOSCO and F. SCARPINI (*}

Communiqué par E.MAGENES.

Abstract. We discuss the numerical approximation of some complementarity Systems in
Sobolev spaces, which occur in the variational Dirichlet problem with unilatéral constraints.

I - THE UNILATERAL DIRICHLET PROBLEM
AS A COMPLEMENTARITY SYSTEM.

Let £2 be a bounded open subset of <RW and ty a given real valued function
defined in fi, with \p < o on the boundary ô fi of fi .

We want to find a function u , vanishing on 6 fi , which is superharmonic and
greater or equal than \jj in fi and is harmonie in the région of ^l where it does
not "touch" the "obstacle" \p , that is, where u > \p .

Simple one dimensional examples show that, even if \js is very smooth, a func-
tion u with all the properties above will have in gênerai discontinuons second order
derivatives at the boundary of the "contact set" u - ty > as it can be intuitively
checked on the foliowing figure.:

(*) Istituto Matematico, Università di Roma.
This paper has been partially supported by GNAFA-CNR.
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84 U. MOSCO , P. SCARPINI

Thus, if — A is the Laplace operator, we cannot expect — A « to be defined
pointwise in £2 in the classical sense. However, we can always think of - AM as a
measure ju in £1, as we shall see more precisely below.

The problem we have in mind can then be formally stated as follows :

M - J / > 0 and ju = - A w > 0 in £2,

(1) M = 0 o n ô n ,

(u - * , ü ) = 0 .
where the vanishing of the pairing between the function u — \jj and the measure ju
has been set just to impose that u be harmonie, Le. ju = 0 , where u > \p .

If \j/ is continuous on £2 the problem above can be dealt with in the frame-
work of the classical theory of superharmonic functions, see [30] .

Here, however, we shall follow the variational inequality approach, due to
J.L. Lions and G. Stampacchia, [24] , [39] .

The function \jj and the solution u are now required to have a finite energy
intégral and problem (1) is then formulated in a weak sense in the Sobolev space
Hl (D,)^\ Namely, if we introducé the Dirichlet bilinear form :

a{u,v) =
1,"

U

(1) H1 (£2) is the space of all functions v € L2 (n), whose distribution derivatives vx. also
2belong to L2 (n), normed by :

1/2

I = 1

The closure of c\ (£1) in Hl (SI) is the Sobolev space #<> (fi)*

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



COMPLEMENTARY SYSTEMS AND VARÏATIONAL INEQUALITIES 85

and define K to be the convex cone

K = { vG H^ (12) / v > \j> a e in Q } ,

then our problem becomes

(2) w e jc fl(w, v - w ) > o , V V G A :

The existence and uniqueness of the solution u of such a variâtïonal inequality
is by now a well known result, see ref [24] , [39] , quoted above

We may wonder, however, in which sense the solution u of (2) is the solution
of our original problem ( 1 ) Let us also note that ( 1 ) (as ( 1') below) may be regarded
as a continuous analogue of so called complementanty Systems that will play a
basic role in the numencal approximation we shall later discuss Therefore, it is
perhaps convenient to describe the équivalence between (1) and (2) with some
more details ^

If ip ïtself vanishes on 3 £2 , then it is not difficult, at the same time, to give a
précise meaning to the conditions (1) and show that they actually characterize
the solution u of (2) Indeed, by assuming \jj G i/J (12) it can be easüy proved
that a function wG//o

l (£2) is a solution of (2) if and only if u and ju = — A u
are solution of (1) Here JU — — AM IS well defined as an element of the dual
space H~l (12) of HQ (£2), hence the pairing between u — \p and ju, appearing
in (1), has the natural meaning of that duality

When the obstacle does not vamsh on 812, some attention must be paid to the
précise meaning of this pairing

ïf we assume that
\jjec (n) n H1 (12) , $ < o on an

then it is easy to show that the measure \j/ has a compact support in 12 This
clearly gives a well defined meaning to the pairing ( u - \p, M) even if now the func-
tion u — \j/ dos not vamsh on the boundary of 12 ^ Again it can be easily
proved that u G HQ (f2) is a solution of (2) if and only if the pair wG HQ (12),
fj. G H~l (12), ix with a compact support, is a solution of (1)

When \jj < 0 on 12, then the support of ju may well reach the boundary of
12 In this case, some regulanty of u is needed m order to well detine the pairing

(2) The relation between vanational inequalities and complementarity Systems has been studied
in a more gênerai setting[ [34] and widely investigatea in [11] , 118] , [19]

(3) Indeed, for any v e H1 (n) we may define O,JU) as (a y,ju)„ where a is some smooth
function, with a compact support in H, which is = 1 on the support of ju

n° avril 1975, R 1



86 U. MOSCO , F. SCARPINI

Let us recall at this point the following well known regularity resuit for problem
(2), see [3] , [22] : If ^ 6 C (S) n H2 (SI), $< 0 on a smooth dSl, then

l (SI) O H1 (SI) and

(3) \\u\\ff2 < C U\\H2

If we assume that :
^ e c ( ô ) n H2 (Si) , tf/<o on dsi ,

then in conséquence of the above resuit, both u-\j/ and M = —Aw "are*' L2 func-
tions in SI and the pairing (u - \p , JJL) has an abvious meaning. Againitcan be
shown, in this case, that (1) and (2) are equivalent, in the sensé that a function
wGtfo1 (SI) n H2(SÏ) isthesolutionof(2)ifandonlyifwandM=-Awe L2 (SI)
are solutions of (1) **' :

Let us finally remark that by introducing the function

problem (1) can be also written as :

£ƒ > 0 , /i = - A I / + v>Q inSl

(V) U =-$ o n ô n

(U , M) = 0

where P — — à \p .

2 - A QUALITATIVE IDEA OF AN ALGORITHM
FOR SOLVING PROBLEM (2).

Let us suppose that ^ G C(Î2) O HL (SI) \p < 0 on 912 , and that

v =— A ^
is a (signed) measure in £2 . Then H. Lewy and G. Stampacchia [23j have proved
that the measure /i = — au, solution of (1) satisfies :

(4) 0 < ju (F) < v+ (F) V Borel set F C Si

where v is the positive part of v, see also [36]. This resuit is stronger thanthe
estimate (3), which clearly folio ws from (4) and the classical regularity resuit s
for the Dirichlet problem once we know that ty^H2 (£2).

Let us now compare the solution u with the giveh obstacle ^ > by taking the
estimate (4) into account. We see that in the régions of SI where the function \p is
subharmonic (i.e., where y+ = 0), there the function u is harmonie (i.e., IJL = 0),
while in the remaining région, where \jj and u are both superharmonic, the posi-
tive measure /z is majorized by v — i>+.

(4) We can replace ^ by ^ - f , f > 0 , use the preceding resuit and then let f -+ 0.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



COMPLEMENTARY SYSTEMS AND VARIATIONAL INEQUALITIES 87

Let us now try to devise a procédure yielding the solution u by means of
progressive modifications of the obstacle itself. By the remark above, we are
induced to set out an algorithm that gradually reduces the négative part of v to
zero» while "releasing" at the same time v+ just to reach the solution # . Such a
réduction of v to fx » which is to say, of ^ to u, could be conceivably achieved
by an itérative process that, starting with an initial configuration u0 = ty brings to
successive configurations u^ ,u2 > > obtained at each step by moving from
a given un_ j , harmonie in a région Ôn_ i, subharmonic in a larger région Qn and
actually strictly subharmonic somewhere in Pn = Qn - ôw_i> to a new configu-
ration un harmonie in the whole région, Qn . To be more definite, let us suppose
that 0 = 0 on dû and let us define initially :

uo =

If Mo > 0, fàen u—uo is the solution. Let us suppose, instead that uo is
strictly subharmonic on a subset of on open région Px , i.e., juo<0 on P± with
JU0 (F) < 0 for some borel subset F C F j . Let us also suppose that P j hasa
smooth boundary. We can then solve the Dirichlet problem :

(5) — A ux = 0 in Qx - P{ , ux = ^ in O - Qx .

If Wj, as a function defined on the whole of O, is such that :

Mj = — A«j > 0 in ü ,

then M = Uj , JU = jUj is the solution we looked for [indeed, we have Wj -
in Û by maximum principle ; Mj > 0 by our hypothesis ; while {u^ — ^,/Uj) = 0,
for supp jUj » (MJ = — Attj), is contained-by (5) — in the région where eij = 0 ,
supp jUj = ^, denoting the support of M1 ] -

Otherwise, let Q2
 = Q\ ̂  ^2 ^e a s m o o t Wy bounded open région in O such that

Mj < 0 o n g 2 , ixx{F) <0 for some F C f>2

Then we replace ux with the solution u2 of the Dirichlet problem :

— A u2 - 0 in Q2 = QiU P2 , u2 = $ 'mQ- Q2

and so on, solving at the nth step a Dirichlet problem like :

-At*w = 0 in Qn = Ö n - i U P ^ , !!„ - ^ in Ï2 - fi«

with ö w = ô r t _ i ^ ^ a smoothly bounded open région in £ï , such that :

juw_i — - A un_x < 0 on Q„ , ju„_i (F) < 0 for some bore lFCP n .

The functions un_i — un and un - u , w beingthe solution of (1), areboth
subharmonic in ÖM ; moreover, un__x - un = ^ - ^ = 0 and un-u = $ - w < 0
in Û — ö«> fof all « = 1,2 , . . . . By the maximum principle, we then find :

(6) $ < un-l < M« < w in O for every « .

n° avril 1975» R-l.



88 u. MOSCO , F. SCARPINI

If ixn > 0, then u = un , yt = nn is the solution of (1).

If the algorithm above actually produces a séquence un, we can then consider
the function :

u — lim un

Clearly, u < u. If pf = — au > 0 in O , then u=% fx = JÏ is the solution
of (1), as it follows from the characterization of the solution w, see [22] : u is
the smallest superharmonic function in £2, vanishing on 3 £2, which is > ^ in Ü.

It should be remarked at this point that the limit function u may depend
on the choice of the région Qn which is done at each step.

Ho we ver, we shall not further discuss how these régions might be chosen in
order to end up with a limit H such that £ = — AtT > 0 in ü .Indeed, before
working out the algorithm just described, we shall first approximate problem (1) by
replacing it with a suitable discrete problem with a finite number of degrees of
freedom, Applied to the discrete problem, the algorithm will corne to an end after
a finite number of steps.

3 - A DISCRETIZATION OF THE UNILATERAL

DIRICHLET PROBLEM

We shall sketch hère an internai approximation of problem (2) by means of
triangular affine éléments. For sake of simplicity, we shall suppose that Q is <*
bounded convex open subset of IR2, with a smooth boundary 3O.

Given h, 0 < h < 1, we first inscribe a polygon Ü,^ in 12, whose vertices belong
to 9O and whose sides have a length which does not exceed h. We then décompose
Q,h into triangles in such a way that :

(7) 0<KhJ'/r<Cl , 0 < C 2 < a < 7 r / 2

where C% and C2, C% < n/2, are given positive costants, /, /', /" are lenghts
of arbitrary sides of the triangulation» a an arbitrary angle of our triangles.

We shall dénote by I the set of ail indices q associated with the internai nodes x
of the triangulation (x is an internai node if the union of ail triangles which have
xq as a vertex is contained in £2). We shall dénote by 31 the set of all indices q
associated with the boundary nodes of the triangulation {xq is a boundary node if
it is a vertex of some of the triangles that décompose Qh and xq is not internai).

For each q e IU 31, we shall consider the function :

^J (x), x e Qh

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



COMPLEMENTARY SYSTEMS AND VARÏATIONAL INEQUALITIES 8 9

which is affine in each triangular element of the décomposition is — 1 at x and
= 0inallx =Éxfl , p e i u a i .

We shall now consider the piecewise affine functions vh (x) defïned by :

(8)

and the cone :

Kh={vh (x) I vh (JC) given by (8), v* > * (xq) V q e I}

The approximate problem is obtained by replacing K with Kh in problem (2):

(9) uheKh :a(uh,vh-uh)>QVvheKh

It can be shown, see [14] and [23], that the solution u^ (x) of (9) converges to the
solution u of problem (2) of order h in the energy norm as h -• 0 : if ty e H2 (ÇI),
the following estimate is indeed obtained in the papers quoted above :

\\u-uh \\HKCh I11// 11̂ 2

We refer to [14] and [35] for more details on this estimate. Let us also notice,
incidentally, that special results on the approximation of the "contact set" u = \p
have been given in [2]. For a gênerai discussion of the convergence of approximate
solutions of variational inequalities such as (2) see also [32] , [33].

Let us now write the discrete problem obtained by replacing the expression (8)
(x), that is :

(10) uk(x)=T uhvh(x),xenh-uh(x) = Qmïl-Çlh
q e I H H

into (9) and by choosing, for every qel,vh (x) = uh (x) + ̂ [ (x) with $h (x)= 0
in O - Üh. We find the system :

« J

dl) M J % ^ £
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where

and

The last condition in (11) is obtained by putting, for each node x where

uh (xq^ ~ uq ^ ^q'vh (*) ~ uh W ~ e ^ W *n t o (9)> w i t ^ e ^ ^ small enough so
that vh e Kh : this gives yt1 < 0, hence yf1 = 0 by the second inequality in (11).

It is easy to check, in turn, that if we take the coefficients tfi of the function

(10) to be the solution of (11) then uh (x) is the solution of (9). So the approxi-
mate problem (9) can be replaced by the equivalent discrete system (11).

If we introducé the vectors :

and

g pel M

then System (11) can be also written as :

Uh
q>0

Uq Mj = 0 , qel.

Let us remark that we could have also obtained the Systems (11) and (13) by
directly discretizing the continuous problems (1) and (1') respectively (and by

putting Uh = - \ph for every q e 3 I in order to eliminate the inhomogeneous

condition in

The équivalence of (11) or (13) with (9) is indeed the discrete analogue of the
équivalence of (1) or (1') with (2) discussed in section 1.

A system of inequalities such as (13) above is known in the literature as a
complementary system and several algorithms are known for its solution, see for
instance [9], [20].

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



COMPLEMENTARY SYSTEMS AND VARIATIONAL INEQUALITIES 91

We shall now sketch an algorithm for solving system (13), which is directly
modelled on the procedure described in section 2. In the following section we shall
give a more detailed description of this algorithm and we shall see that it essentially
reduces to an algorithm introduced by Chandrasekaran [4] to solve complementarity
Systems involving matrices with non positive off diagonal entries.

We shall omit the superscript h and we shall write instead t/°, J/1,... to dénote
the vectors (£/°) a € v (Ul) € j , . . . yielded by the algorithm. Similarly, we

shall write JJ° , JJL1 , . . . and so on.

At the initial step we define U°, fj° by :

If v > 0 Vq, then the pair :

is the solution of (13).

Let us suppose, instead, that there is a set P% of indices such that

Then we define U1 to be the solution of the system :

Uj = O qel-Ql

If , -

then the pair :
U=Ul , M = M1

is the solution of (13).

If this is not the case, we choose a set P2 of indices such that

and we define the vector U^q e I, by solving the system :

n° avrü 1975, R-l.



92 U. MOSCO , F. SCARPINI

*£ = 0 , qeI-Q2

The algorithm ends if

and then

U=U2 , tx = fi2

is the solution of (13).

Othenvise, we go on by choosing a new set of indices :

and putting Ö3 = ö 2 V

In the following section we shall prove that the algorithm cornes to an end
after a finite number of steps, at most N if N is the number of the internai nodes.
The proof exploits the special properties of the matrix a which are inherited
from the continuous boundary value problem of which Systems (13) is the discrete
analogue. Indeed, the matrix (12) is positive definite, in particular, all principal
minors have positive déterminants, and in conséquence of condition (7), it is easy
to see that apq<0Yp^q.

4. - THE DISCRETE COMPLEMENTARITY SYSTEM

Let A = (apq)p q e 1 be an NxN matrix with the following properties : (i) A

belongs to the class (P), which is to say, all principal minors A = (a ) €Q
ÔC I, have a positive determinant ;

(ii) A belongs to the class (Z), that is, a < 0 Vp^<?.

Let us notice that we need not assume A to be symmetrie.

Let v — (yg)Q€i be a given Â  vector. The complementarity system we are dealing

with can be written, with standard notation, as follows (5) :

(5) If x = JCj = (x ) e p w e write x > 0 if x > 0 Wq e I.

Moreover, x.y = Z x y .
q e l q q

Revue Française d'Automatique, Informatique et Recherche Opérationnelle
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U>0,

Algorithm I

At each step of the algorithm we choose a family Q C I of indices. The system
in (14) can be accordingly partitioned as follows :

(15)

' = iVff UQ

where
g ' = I - Ö ( 6 ) .

At this point the following conditions are imposed :

(16) ffi. = 0 , / i f i = 0

and then UQ is determined by solving the system :

(17) AQQUQ+pQ = 0.

Let us notice that there is a unique solution of this system, since det A QQ > 0
by assumption (i).

(14)
H = A U+v\

where U= (U)q q e x ,/i - Qi)q q € r

This step is the final one, and the solution of (14) is given by :

(18) UQ=-A-1
QVQ,UQ.= 0

(19) MQ=0 ,txQ, = AQ,QUQ+vQ, ,

provided the following positivity test is satisfled :

(20) HQ, = AQ,QUQ+VQ

In the opposite case, Le. n0, ^ 0, we choose a set :

(21) PC {qeQ'/vq<0\

(6) In the following, for any set Q C I we shall always put Q' = I - Q.

n° aviill975, R-l.
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and take a

(22) newö = o l d Ö ^ ^ •

In the initial step we simply take Q — <t>, which is to say, we put U= U^ = 0 and
the positivity test (19) becomes :

Atj = vx > 0 .

Thus, if the given v is > 0, then system (14) is trivially solved by the pair :

If v ^ 0, then we choose :

and take
Q = P

and go on as above.

We shall now prove that going from the (« — 1)* step to the n th step, thus
replacinggw_1 with

where Pn has been so chosen as to be :

we find :

(23)

(24)

while

These relations are clearly the discrete analogue of the monotonicity relations
(6), which were obtained in section 2 as a conséquence of the maximum principle.
The role of the maximum principle is now taken by the following lemma :

LEMMA 1. Let A = Ax G (P) n (Z) and x = x{ satisfy

for some Q C I. Then, JC < 0.

-Revwe Française d'Automatique, Informatique et Recherche Opérationnelle
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Proof. We have :

xQ,<0

Since A G (ƒ>) n (Z), then ,4"^ > 0 (see [15]). Therefore

Since ̂ « ^ , < 0, this implies :

xQ < 0 Q.E.D.

COROLLARY. 0 < £/""7 < tf * < £/

Proof. We have U° = 0, Un~l satisfies (16) and (17) with Q = Qn_v Un

satisfies (16) and (17) with Q = Öw = Öw_ j U ̂  and /^ C Ö'„_x is such that :

^ = ^ Q UQ +VP« n ^n-i un~\ n

Therefore, the vector :

x = un~l - Un

satisfies the hypothesis of Lemma 1 withQ = Qn- ïn fact, we have :

V.'^"-'«.-.+ V. = 0 '

n n

^ 7 1 =and since U" = 0 , C/^71 = 0, we also have :

Y = ïïn~^—lln = 0Q' Q' Q'^n ^n ^n

(7) If x = Xj is a vector, we write x > 0 if x > 0 V e I.

n° avril 1975, R-l.
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Hence, by Lemma 1, x < 0, that is :

Un~l < Un .

To show that Un < U we apply Lemma 1 to the vector x ~ Un — U, again with

Aigorithm I, as we already said, essentially reproduces the algorithm given in
[4]. It may be summarized in the following cyclical scheme, where A° = A^ and
b° — b® dénote the initial data

STEPO

Put ft, = fc° , Q = 0.

Goto STEP 1.

STEP1

9 stop :I> = I> I , / I = / i j are the solutions of (14).

qeQ'/bp<0\

Go to STEP 2.

STEP 2

Put Q =

Goto STEP 1.

Since at each intermediate cycle ö increases at least of one more index, the
algorithm stops after at most TV cycles have been done, TV being the size of I.

Let us point out that a choice must be made at each step : the choice of the set
P C Qf : P C { q G 2 7 bQ < 0 }. Let us remark in this respect that the matrix (12)

Revue Française d'Automatique, Informatique et Recherche Opérationnelle
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is sparse, due to the fact that the support of each \$\ is localized around the vertexx .

This is indeed a typical feature of any finite element method. There are, therefore,
quite efficient methods for solving a System like (17), even if the order of Q is
very large. For instance, itérative methods may work very well, see e.g. [42]. Thus,
it seems the natural choice, in this case, to take P maximal, which to say :

However, the apposite minimal choice, consisting in taking at each step :

P = \q\ ,v

may be the natural one if we want to solve System (14) by pivotai methods of
Gauss-Seidel type as we shall describe in the following Algorithm IL

Algorithm II

Let us firts remark that in the Algorithm I, once we have chosen the set of
indices Q as in (22) and partitioned the linear System, appearing in (14), in the
form (15), we essentially make two further steps : fust, we impose (16), that is the
vanishing of UQ, and JIQ ; then we evaluate UQ by solving the system (17) and use

it to make the positivity test (20) on ju^,.

In the algorithm we shall now describe, these two steps are essentially taken in
reverse order : first we evaluate Up by making a pivot transform on App and

replace it in the remaining équations, in particular in the expression of \XQ, (recall

that new Q = old Q U P) ; then we impose the vanishing of UQ, and //« and verify
the positivity of JIQ,.

More precisely, let initially be :

Q = P
with

pc { < ? e i / ^ < 0 } .

We carry out a principal pivot transform (p.p.t.) TQ in the system (15) with

block-pivot on AQQ. We thus replace System (15) with :

(25)

n° avril 1975, R-l.
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where :

and

AQQ

AQ'Q

~AQQ

— A A

v„ — — A

QQ

Zr~ v

U. MOSCO , F. SCARPINÏ

AQQ' =~

A —A —A A~^ A
Q'Q' Q'Q' Q'Q QQ QQ'

Q **QQWQ PQ'~PQ'~AQ'QAQQPQ *

Note that, since we had VQ < 0, now we have VQ > 0. We now impose the va-

nishing of UQ > and \1Q and we obtain from System (25) :

The positivity test (20) now becomes :

(26) vQ,>0

If (26) is satisfied, then clearly :

U=(ûQi0) M = (O,ïg . )

is the solution of (14). If not, we choose, as in Algorithm I, a new set of indices :

and wc go on by making a block pivot trar.sforrn with pivot on A.pp .

At each intermediate nth step of the algorithm we are then in présence of a
System like this :

(27) M/, = B^ nQ + B„ Up 4- Bp(mwQ). U(newQ). + bp

^(newQ) ' = B(newQJ ' gM6 + B(newQ) ' PUP +

+ B(newQ)' (newQ)'U(newQ)'* b(newQ)'

newQ = ô U P, which has been obtained by carrying out successive p.p.t., indexed
by Pyy P2, —, Pn^\ o n the initial System (15). Thus, at the nth step we have :

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



COMPLEMENTARY SYSTEMS AND VARIATÏONAL INEQUALITIES 9 9

while P C Q' is a chosen set of indices such that :

bp<0 .

The following lemma describes what happens to System (27) above when we
carry out a p.p.t. Tp with block pivot Bpp. Let the transformed system be :

UQ = ÏÏQQ H + ÏÏQP *P + BQ(newQ)>

Up - BpQ »Q + Bpp up + Bp(newQ), U(newQj, + bp

(28)

^(newQ) ' (newQ) ' Q^Q (newQ) '

+ BfnewQ)' (newQ)' U(newQ)f + ^

~ BQ " 5 B

Thus:
D" — L

QQ

BQ(newQ) ' " BQ(newQ) ' ~ 5Q? 5?P BP(newQ) '

BPQ ~~BPPBPQ

Bpp - 5 ? i >

= _ O-IJBP(newQ) ' ~ 5Pi> BP(newQ) '

Bfnew QJ' Q~ B(new Qj * Q B(new Q)' P BPP BPQ

B(newQ) ' P ~ B(newQj * P BPP

J-IJB(newQ) ' (newQ) ' ~ B(newQ) ' (newQ) ' B(newQ) ' P BPP BP(newQ) '
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while

b(newQ)'=zb(newQ)'~'B(newQ)'PBPPbP '

We have :

LEMMA 2.

(29)

L e t P C g '

and put

Let B =

be such

-Bne

£

that :

(P) and Q C ï such that :

1Ql>OiBQ,l€(Z) b >0 .

bp<0

new Q^QUP .

Then, if a principal pivot transform} with block pivot Bppt is carried out in

system (27), the transformed system (28) is such that BE (P) and

(30) B . - > O R. „..„G(7A.h. ~.>b, „ t

Moreover,

( 3 0 6p > 0 and ̂ n e v v Q ; , < b(newQ),

/ . lit is well known that p.p.t. leave the class (P) invariant, see [41], hence
B E (P). Moreover, as we have already noticed, since Bpp G (P) n (Z), then

(32) B$>0.

Therefore,properties(30) of B and b can be directly checked on their expressions
listed above, by taking (32) and (29) into account. In addition, since we know that

det (Bpp) ¥= 0 and bp < 0, then bp = - Bpp bp > 0. Finally, since B(newQj * P

B£ bp > 0, we have b(newQ), = b(nmQ), - BfmwQ) .p Bp\ bp < b(mwQ). Q.E.D.
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The monotonicity conditions in (30), (31) are clearly the analogous of relations
(23), (24). The new algorithm endsup when, putting UQ> = jUg = 0 in system(27)
the positivity test :

(i.e. lig, > 0 in older notation) is satisfied.

Let us summarize Algorithm II by a cyclical scheme. We have :

STEPO

Goto STEP 1.

STEP1

\ibgt>0, stop :v = vvju = jUj are solutions.

If bQ, } 0, choose P C {q C Q>/ bq < 0 }.

Go to STEP 2.

STEP 2

Make a p.p.t. with block pivot App in the system

?ut(A,b)=Tp(A,b),Q =

Goto STEP 1.

Clearly, by LEMMA 2, the algorithm stops after at most N cycles, if iV is the
size of I. Finally, let us notice that here too a choice of P must be made at each
step. As we already remarked, the minimal choice, that is, to take P consisting of a
single index q such that b < 0, has the advantage that all the p.p.t. that must be

carried out, are elementary pivot transformations and there is no problem

of evaluating the inverse matrix App.

In the case we are interested in, however, we know that the initial matrix (12)
is sparse and thus special 'ad hoc' techniques could perhaps conveniently used in
doing the block p.p.t. on App. It should be also noticed that as successive p.p.t.are

carried out, the matrix involved becomes less and less sparse.
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The numerical approximation of problem (1) by means of the algonthms
described above has been investigated in more details in [21].

Let us also mention in this regard that numerical approximations of problem (1),
based on different methods, have already been considered by various authors, see
for instance [2], [5], [6], [12], [13], [16], [17], [31], [37], [38], [40]. In particular,
the approximation method based on Algonthm I is sunilar to the "conditioned
harmonization" described in [12], [31],

However, it yields non-decreasing approximations of the solution of the
discrete problem, whereas in [12], [31] non-increasing approximations are obtained.

We refer to [21] for further comments on all methods quoted above.
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