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ANALYSE NUMÉRIQUE

(Vol. 10, n° 3, mars 1976, p. 29 à 42)

THE TRUNCATION METHOD FOR THE SOLUTION
OF A CLASS OF VARIATIONAL INEQUALITIES (*)

par Alan E. BERGER (i)

Communiqué par G. STRANG

Abstract. — A concise numerical method for a class of variational inequality problems is presen-
ted, and numerical results are given. Sufficient conditions for stability are derived, and an error
estimate is obtained for the steady state problem.

I. INTRODUCTION

We consider a concise numerical method, calfed the truncation method, for
the solution of a class of variational inequalities. The truncation method
was developed for approximating the solution of a spécifie parabolic diffusion-
consumption problem with a moving free surface in Berger, Ciment, and
Rogers [2]. Since this diffusion-consumption problem is equivalent to a
parabolic variational inequality problem (Lewy and Stampacchia [10]), the
truncation method is hence seen to be applicable to this type of variational
inequality.

The results of numerical experiments will be presented which indicate an
0(A/ + Ax2) error in L2 for the parabolic problem. Numerical solution of an
elliptic variational inequality problem by relaxing the corresponding time
dependent problem toward the steady state will also be analyzed. Stability
conditions will be given under which the truncation method solution will

(*) This research has been supportée by the Naval Surface Weapons Center Independent
Research Fund and under ONR Research Project Number RR 014-03-01 (NR 044-453).

(1 ) Mathematical Analysis Division Naval Surface Weapons Center Silver Spring, Maryland.
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30 A. E. BERGER

approach a limiting value. An error estimate will be obtained by comparing
this limit with the Ritz solution, for which an 0(Ax) error estimate in H1 has
been proven by Mosco and Strang [15] and Falk [6],

II. DESCRIPTION OF THE FREE BOUNDARY PROBLEM
AND THE TRUNCATION METHOD

For simplicity we state the équations in one space dimension ; wherever
a second spatial dimension affects the analysis of the truncation method it
will be pointed out. The type of probîem considered in [2] was to find the
concentration c(x, t) ^ 0 of a substance which diffuses and is consumed at
unit rate wherever it is present. Letting s(t) dénote the location of the interface
between the région where c > 0 and the région where c = 0, an example of
the establishment of a steady state concentration is given by

(la) c, = cxx — 1 0 < x < s(t) t > 0

(1 b) c(0, r) = 1/2 t ^ 0

(le) c ( s ( t \ t) = cx(s(t), t) = 0 t > 0

n A \ i n\ t \ f 9 ( x ~ V3)2/2 xe[0, 1/3] 1
(ld) c(x,0) = co(x) = J ; L ' f J y

[^ 0 x ^ 1/3 J
(1 e) s(0) = 1/3.

The steady state solution a(x) is

/̂ \ / \ f(l ~ x)2/2 0 < x ^ s 1 .
(2) a(x) — *J t-wheres = 1.

L ° x ̂ s J
The truncation method for (1) works in the following way. One chooses a

fixed interval J = (0, 6) such that s(t) < è (by numerical experiment if neces-
sary). Having approximate solution values C" at time t'\ one, obtains interme-

diate values Cn+l for time tn + l = tn + At by advancing

(3a) c, = cxx - 1 i e J
(3 b) c (0 , / )= 1/2
(3 c) c(6, 0 = 0
(3d) c(/ = t") = C"

one time step from /" to tn+l using some finite différence or finite element
scheme for (3). At each node point /?, the approximate solution for (1) at
time tn + l is then given by

(4) Cn+1(p) = max (0, C H
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TRUNCATION METHOD FOR VARIATIONAL INEQUALITIES 31

The truncation method does not depend in any way on explicitly tracking
the front s(t) (whose approximate location is taken to be the first node point/?
at which Cn vanishes). Tracking multiple fronts or fronts in two space dimen-
sions thus présents no computational difficulty, since the method works
by advancing a linear parabolic problem (3) on a fixed domain J (or a two
dimensional analog) followed by the simple opérations (4). In [2] the trun-
cation method with the alternating-direction finite différence scheme was
used to solve such a two dimensional problem on a rectangle.

The discussion in Lewy and Stampacchia [10] (see their Problem I) and
in Brézis [3] (in particular pages 99-101) demonstrates that (1) is equivalent
to a parabolic variational inequality problem which will be described below.
A two dimensional steady state free boundary problem arising in semiconduc-
tor theory, which corresponds to the two dimensional problem considered
in [2], is formulated as a variational inequality by Hunt and Nassif in [8] .

III. FORMULATION OF THE VARIATIONAL INEQUALITY

For an open set Q, we let H1(Q)(H2(Q)) dénote the Sobolev space of
functions with one (two) L2 derivatives in Q, and we let HQ(Q) C HX(Q) be
those functions which vanish on the boundary F of Q (in the sense of the
Trace Theorem). We also use the notation W2

œ(Q) for the functions in H2(Q)
whose derivatives up through order two are bounded on Q. For u, \v e L2(Q)

we set (Ü, w) — \ vw and for v, w e Hl(Q) we set a(v, w) = I Vv . Vvv. In the
Jfi Jn

remainder of this section Q will be a C2 domain in R2 or an open interval
in Rx.

If 0 e Hl(Q\ one has the convex subset K(Q) c: Hl(Q) consisting of all
v e H{(Q) satisfying

0 ^ i; a.e. (almost everywhere) on Q.

Note if 0 ^ 0 a.e. on F, K0(Q) - K(Q) n Hl
ö{Q) is nonvoid. Let f e L2(Q),

uö e Hl
ö(Q) n W2

X(Q), and g, \|/ e C2(Q) with 0 = v|/ - tj ^ 0 on F. Then a
gênerai type of parabolic inequality is to find M(.Y, t) such that for almost
all t > 0,

(5 a) u(x,t)eKQ(B)

(5 b) (v - M, ut) + a(v - M, u) ^ (v - w, ƒ ) for v e K0{Q)

(5 c) M(JC, 0) = uo(x).

Under the assumptions we have imposed, one has (Brézis [3]) :

(6 a) u : [0, oo) -> Hl
0(Q) is continuous

(6 b) u{t)eH2(Q) and M, G L°°(Q) foreach t > 0

n°mars 1976.



32 A. E. BERGER

and for almost all / > 0

(6c) ut = uxx + ƒ a.e. on J xju > 9 j ,

and

(6d) M, = 0 a.e. on { x/u = 6 )

Weaker hypotheses on the data yield weaker results on the regularity of u [3],
[5].

The problem (5) corresponds to (1 ) if we let c = u + g where : g e C2(J)
and flf(O) = 1/2, 0(6) = 0; * = 0; ƒ = - 1 + $„, and u0 = c0 - g ([10]).
Indeed, noting the results (6), ( 1 ) is equivalent to the following variational
inequality with inhomogeneous boundary data : for almost all t > 0

(7 a) c(x, 0 e *(*) and c(x, r) - g(x) e H^Q)
(7 b) (vv — c, cr) 4- a(w — c\ c) ^ (vv — c\ f) for all w such that iv e AT(v|/)

and w - g e //J(fi)
(7 c) -c(x,0) = co(x)

where \|/ = 0, Ö(0) = 1/2 and £/(*) == 0, and ƒ = - 1.

In analogy with (3), (4), we define the truncation method for (7) as follows.
Given (approximate) solution values C" at time f, one obtains intermediate

values C n + l at time /" + 1 = /" + Ar by advancing

(8 a) ct = cxx + ƒ
(8 b) c = ö on T
(8 c) c(r = /") = C"

from f to rH + 1 by any appropriate numerical scheme, and then for each grid
point /?,

(9) C" + 1(/7)

Note in the numerical implementation, ƒ and g can just as well depend on t.
For the sake of simplicity we henceforth take g = 0.

IV. NUMERICAL EXPERIMENTS WITH
A PARABOLIC PROBLEM

Numerical calculations were done for the parabolic problem (7) with data

(10a) Q = (0, 1)

(10b) g - 0

(10c) v|/ = 2JC(1 - x)

(10d) ƒ(*, 0 - (40JC* - 20x - 40)exp {x + t2 - \) - 40x/ H- 44.
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TRUNCATION METHOD FOR VARIATIONAL ÏNEQUALITIES 33

The initial data is w(x, 0) where for t e [0, 1] the exact solution is

, t) = f20x(-.x - t2 + exp (x + t2 - 1)) + \j/(x), 0 ^ x ^ 1 - t2, 1

In order to advance (8) forward in time, we used the finite element method
with the subspace SAx of piecewise linear functions on a uniform Ax mesh,
and Crank-Nicolson or a purely implicit method in time (e.g., [4] or [18]).
The values of the approximate solution U at the node points were then found
using (9). The true solution and some approximate solution values are plotted
in Figure 1.

1.68 ,-

« 0.840 -

0.560 -

0.280

0 000
1.000.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875

Figure l
Exact solution (solid lines) ; and approximate solution values (points) obtained using

the truncation method. Linear finite éléments and Crank-Nicolson in time were used with

Ax = .05, M = .00375

A similar family of numerical methods for the parabolic problem has been
investigated by Lions [11]. Instead of the pointwise opérations (9), Cn + 1 is
set equal to the L2 projection of C" + 1 into { veSAx/v(p) ^ \\f(p) at each
node p }. A stability result and weak convergence are demonstrated for this
method in [11].

At eaèh time step we calculated the L2 error as
1/2

J x \x'+\u-ur[
éléments J Xj

using four point Gaussian quadrature [19] to compute the intégral over
each element. If s = 1 - t2 was interior to an element [xp *J + 1 ] , it was

n°mars 1976.



34 A. E. BERGER

subdivided into [_xj9 s] and [s, x ; + 1 ] and the four point Gaussian quadrature
was done on each subinterval (hence guaranteeing the integrand to be a smooth
function over each quadrature interval). Calculations were done in single
précision on a CDC 6400 (14 significant digits).

Tables 1-2 indicate that with both the implicit and Crank-Nicolson methods
in time, reducing Ax by a factor of 2 leads to a réduction of error by a factor
of 4. This is consistent with a spatial error of 0(Àx2). The time discretization
error seems to behave like 0(At) after the présence of the « obstacle » \|/(x)
makes itself felt (Tables 3-4). The irregular behavior of the error for smaller
times is probably due to interaction of the discretization error in advancing (8)
with the error from the truncation opération (9). For the spécifie problem
considered in [2], the error due entirely to the truncation (done at every
point of Q, and assuming (8) to be advanced « analytically » on Q with no
error) was shown to be 0(At).

Note that for a fixed / e (0, 1), the solution (11) as a function of x has
a jump in the second derivative at x = 1 — t2 and so it is not in H3(Q). In
gênerai, as pointed out by Falk in [6] and Strang in [17], use of higher order
éléments (beyond quadratics) would not be expected to resuit in a better
global spatial error due to the limited smoothness of the solution.

V. THE TRUNCATION METHOD FOR AN ELLIPTIC PROBLEM

We consider the elliptic variational inequality corresponding to the « steady
state » of (7), for convenience taking homogeneous boundary data (g = 0) :

(12 a) u(x)eKoty)
(12b) a(v - M, u) ^ (v - M, ƒ ) for v e K0(y\f).

If f e L2(Q), \|/ G C2(Ô), and Q is an open interval in Rl or a C2 domain in R2,
the solution of (12) lies in H2(Q) [3]. By Sobolev's inequality u is continuous
on Q [1], and on the open set D where u > \|/, u satisfies

- K« = ƒ a.e.

while [10]

— uxx = — y\fxx a.e. on O — D.

The numerical solution of (12) by relaxing the corresponding parabolic
problem (7) toward the steady state using the truncation method will be ana-
lyzed. The « initial guess » wo(x)can be arbitrary and the method considered for
the advancing of (8) is the finite element technique with linear éléments. In
two space dimensions we assume that Q is convex, so the triangulated région is
contained in Q. The stability and convergence of the truncation method
applied in this way will be examined.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle
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TRUNCATION METHOD FOR VARIATIONAL INEQUÂLITIES 37

Let cpl5 ..., <pm be the piecewise linear basis fonctions, with node points
Pu ..., Pm; the Gram or mass matrix is Mtj = (q>., cp,.), the stiffness matrix is
Ktj = a((p-, cp7), the load vector is Fj = (q>p ƒ ), and the obstacle vector is

m

*¥j = ty{Pj). If the approximate solution at time f is Ua(x) = £ <?"<Pj(*), we

let Qn be the (column) vector (qn
u ..., g£). For Fe i?m we write V^^iïV^ *¥}

for; = 1, ..., m, and for F e ^ w e define F = f] P> ; G ifJ(Q).

The advance step (8) of the truncation method is then

(13) M{Qn+l - Qn)/At + K(aQn+i + (1 - a)Qn) = F

where a = 1, .5, 0 for the implicit, Crank-Nicolson, and explicit time discre-

tizations, respectively. Solving for Qn + 1,

(14) Qn + 1 = (ƒ + aAtM-^)-1^ - (1 - a)AtM-lK)Qn +

+ (M/A/ + a^)" 1 / 1

where /is the m x m identity matrix. We dénote the operator on Rm taking Qn

into Qn + 1 by P and the matrix multiplying Qn in (14) by A. The truncation

opération (9) is Qn + 1 - r (g n + 1 ) where the 7 component of T(Ô" + 1) is

max (\|/,s Ö" + 1) and so

Qn + 1 = LQn where L = ToP.

If L is shown to be a contraction mapping on Rm with respect to some norm,
then Qtt will converge to the fixed point of L which we call g, and stability
follows. Convergence will be evaluated by comparing Q with the solution of
the Ritz approximating problem

(15) min a(W,W) - 2(W, f)

or

(16) min W'KW - 2W*F

which is equivalent to (see e.g. [12])

(17) W > V and for any V ^ *F, (K - J^)'A:^ ^ (K - FT)'F.

The error estimate

(18) ! u - ^ 1 ^ = 0 (mesh size)

has been demonstrated by Mosco and Strang [15] and Falk [6], We note that
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38 A. E. BERGER

the followmg itérative « truncation type » algonthm is used for direct appro-
ximation of (16) (Lions, Trémolières, Glowinski [13], [14]) :

(19 a)

(19 b)
W" + l = max (*F„ (1 - o^W^ + wW^1-) i = 1,..., m, 0 < <o < 2.

VI. STABILITY

In this section we prov& that L is a contraction mapping under various
assumptions. For a uniform Ax mesh on a line it is easy to verify that the
matrices M and K (and hence M ~l ) commute (this is not true for an irregular
mesh or in two dimensions). One has

Theorem 1. — Assume M and K commute and impose the usual Euclidean
norm on Rm. Then the operator L is a contraction for At sufficiently small
when a G [0, 1/2), and for ail Ai when a G [1/2, 1],

Proof - We use the notation \V\2 = \V\f2 = £ Vf. The operator Tisthen

obviously

and so

\LVX

nonexpansive, i.e.,
\TVy -

- LV2\ :

' TV2\ <

^ \PK -

\vl -

PV2

-y*\

= \A

for 1

iK - v2)\

\,v2 G H. ,

V2

The considération of P (i.e., the l2 norm of the matrix A) follows the usual
type of stability argument for différence schemes for parabolic équations.

From their définition, M and K are symmetrie, and are positive definite
since

V'MV = ||F||u(Q) and V'KV = a{V9 V) for Ve Rtn.

Using the assumption that M and K commute, we may simultaneously uni-
tarily diagonalize M= : and K, and find that

1 - (1 - q) Mkjmx

1 + a Atkjmt
(20) ||>i||,2 = max

where kl7 mt are the eigenvalues (in appropriate order) of K and M respecti-
vely. The result follows.

For a uniform Ax mesh on an interval, the stability condition when a = 0
is comparable to that on the Standard explicit finite différence method which is

(21) Ai/Ax2 < 1/2

Revue Française d Automatique, Informatique et Recherche Opérationnelle



TRUNCATION METHOD FOR VARIATIONAL INEQUAUTIES 39

(e.g. page 189 of [16]). For a uniform grid, M and A^have the form

l '
l.

.4

1

i
4 /

K
1

= Âx

/
—

\

2.

1.
- 1

'*-. 2

- 1

\

- 1

2 /

Using the Gerschgorin circle theorem (e.g. [20] ), one has

kt < 4/Ax while mx ^ Ax/3.

The stability condition from (20) is then

(22) A//Ax2 ^ 1/6.

f*If the trapezoidal rule ƒ dx ~ (b - a)(f(b) + f{a))/2 is used to com-
Ja

pute Mip then M — Ax/ and the left side of (13) is just Ax times the Standard
différence scheme for ut — uxx, in which case (20) yields (21) for a = 0. Simi-
larly with a regular triangularization of a rectangular région (uniform Ax,
Ay and all diagonals drawn in the same direction), and the vertex rule to inte-
grate on each triangle abc

Jabc

fdxdy- (f(a) + ƒ (ft) + f(c)) area (oftc)/3,

the matrix M becomes Ax Ayl. The left side of (13) is then Ax Ay times the
usual différence scheme for ut — uxx — uyy whose stability condition for
a = Ois ([16])

(23) A;/Ax2 + At/Ay2 ^ 1/2.

We extend theorem 1 to the case where M and K do not commute, but
under the restrictive hypothesis that M is a (positive definite) diagonal matrix
(which is the case with any grid if the trapezoidal or vertex quadrature methods
have been used to form M). We now use the inner product

(24) (Fl5 V2) = V[MV2 for Vl9 V2 e /T ,

with which T is again nonexpansive (it is for this, and only this, that we need
to assume M is diagonal). It remains to show that for some / e (0, 1 )

(25) \AV\M^1\V\M
 f o r VeRm,

which is a usual way stability is demonstrated for the finite element method [ 18 ].
From the theory of pencils of quadratic forms [7], the eigenvalue problem

(26) KV = XMV or M^'KV = XV

n°mars 1976.



4 0 A. E. BERGER

has m linearly independent eigenvectors Ei which are orthogonal with respect
to the inner product (24), and the eigenvalues Xt of (26) are positive. We then
have

AF p

and so the conclusion of theorem 1 holds using the norm (24).

We note that if the method of Lions [11] is used, in which T(V) is then
defined to be the L2 projection of V into

it is no longer necessary that M be « lumped » into a diagonal matrix for the
conclusion of Theorem 1 to hold. This is because for T thus defined, T(V)
is the solution of

min \S - V\2
M or min (S, S)M - 2(S, V)

and so ([12])

(28) \TV, - TV2\M < |K, - V2\M.

We also note that with a regular grid, a = 0, M lumped into a constant
times /, and with At = Ax2/2 in one dimension or Aï = (Ax2 + Ay2)/2 in two
dimensions, (14) becomes the « Jacobi » form of (19 a) : W1^1 is replaced
by W"j on the right hand side.

VII. ERROR ESTIMATES

In the case that M has been « lumped » into a (positive definite) diagonal
matrix, and the explicit method is used (a = 0 in (13)), Q turns out to be
exactly the solution W of the Ritz problem (15)-(17). In this case, by (18),

(29) | | " - G l k n ) = 0 (mesh size).

To show that Q — W, we use the property that Q is the fixed point of L ;

(30) Q = T(Q) = T(Q - AtM~lKQ + AtM~lF\

which immediately implies that

Q ^ T and
(31) if QL > % (M

The problem (31) is quickly seen to be equivalent to the discrete varia-
tional inequality

(32) Q ^ Tand ( F - Q)lM~lKQ > (K - Q)lM-lFiox all V with V^V.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



TRUNCATION METHOD FOR VARIATIONAL INEQUALITIES 4 1

Because M is diagonal and positive definite, there is no change in the
inequalities (31) — or in the equivalent problem (32) — if we replace M by
the identity matrix /. Since this replacement leads back to (17), the steady
state Q in the approximate parabolic problem is identical with the Ritz approxi-
mation W. The same is true for Lions' scheme of projection instead of trun-
cation, since it is equivalently defined by ([11] pages 314-316) :

(33) (v - Qn+\ ^1+1
A~ Ö*\ + a(V - Q" + \ Qn) > (F - Q"+1, f)

for V > T.

For a > 0, and assuming (M~ XK + KM~1 ) is positive definite, we have as
yet only been able to prove that \Q — W\ ^ CAx . Ar, where CAx -> oo as
Ax-> 0.
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