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A RITZ METHOD BASED
ON A

COMPLEMENTARY VARIATIONAL PRINCIPLE (1)

by Richard S. FALK (2)

Communicated by G. STRANG

Abstract. — We show how a finite element method based on a complementary variational
principle for the approximation of a second order elliptic Dirichlet problem leads to the same
équations and a more direct proof of estimâtes obtained for a finite element method using
Lagrangian multipliers.

1. INTRODUCTION

In this paper we wish to re-examine the application of Lagrange multipliers
to the finite element method for the approximation of the Dirichlet problem
for second order elliptic operators. A finite element method using this approach
was first analyzed by Babuska in [4].

There_are three purposes for this re-examination. The fest4s^to see more
clearly the sources of error arising from the approximation scheme by viewing
this finite element method as an approximation based on a complementary
variational principle (i. e. as an approximation to the dual problem) rather
than as arising from a search for a stationary point. The second is to simplify
the proofs of the error estimâtes. The final purpose is to show why one still
obtains a good approximation to the solution when the method is applied
on certain special domains (e. g. rectangles), even though the conditions
imposed in [4] are violated.

We will be considering then the approximation of the problem

u = g on F
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40 R. S. FALK

where
£ d ( du\

l+cui,j=i dXi\ dxjj

and Q is a bounded domain in RN with smooth boundary F. We will assume
that a ij (x) and c (x) satisfy the following:

(Hl) ^ W e C 1 ^ ) , c(x)eLœ(Q),

(H2) au(x) = üjiix), U j = 1, .. •, Nf

(H3) c(x) ̂  c0 > 0 for some constant c0,

(H4) S av(*)^£a£ç?,

for all ̂  = (^ls . . . , £,N) e RN and some constant a > 0.
Define a bilinear form

^ r , ^ du d v . r
a(u, Ü ) = 2- fly(x)-- —-dx+ I c

Under hypotheses (H 1)-(H 4) it is easy to verify that || v \\E = \a (v, v)]l/2 is
a norm equivalent to the H1 (Cl) norm, i. e. there exist positive constants dx

and d2 such that

^IIHUilHI^^IIHIi- (5)
Making use of a standard complementary variational principle, (e. g. see [1])

the solution u of (^r) minimizes the functional

over all v satisfying A v = ƒ in Q, where

Bv= L flyrvi' v = (vlf . . . , vN)

is the outward normal and < ., . > dénotes the L2 (F) inner product.
The approach we will take is to introducé a new variable a and define u (oc)

to be the solution of

, i;> for all
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A RITZ METHOD BASED ON A COMPLEMENTARY PRINCIPLE 41

i. e., u (oc) is the weak solution of the boundary value problem

A u (a) = ƒ in Q,

B u (a) = a on F.

Hence we view the family of solutions of the constraint A v = ƒ as being
parametrized by their conormal derivatives on F. We then observe that if 0
minimizes the functional

subject to a (u (a), v) = (ƒ, u) + < a, v > for ail v G H1 (Q), then u (0) is the
solution of (^-). Writing out the variational équations, we obtain
a (u (9), M (a)-M (0)) = < a, g > for ail QLEH~1/2 (F), or using the définition
of u (a),

<W(0)-g, a > = 0 for ail ocetf~1/2(F).

Now the solution w of ^ satisfies iu—g,a} = 0 for ail a e H~i/2 (F) and
a {u, v) = ( ƒ, Ü) for ail u e ^ J (Q). Hence

u-u(0)eH^(Q) and a(u-u(9), u) = 0

for ail V€HQ(Q). Choosing v = W~M(0), we obtain || M — M (9)||£ = 0 or
u = u (0).

We will consider a Ritz method based on this last minimization problem :
Probtem (PJ : Find % e Thl (F) such that

Lh(Qk)= inf Lh(ah)
<theTh2(D

where

Lh (OLH) = - a (iifc (afc), uh (aA)) - < aft, g >

and wft (ah) e Thi (Q) is the solution of

a (uh (oe„), vh) = ( ƒ, ufc) + < afc, i?fc > for all t;A e Thl (Q).

The finite dimensional subspaces rftt (Q) and 1̂ 2 (F) contain functions defined
on Q. and F respectively, and will be defined later.

Writing out the variational équations for this approximate problem, we
obtain

a (uh (A), uh (ah) - uh (0)) = < ah, g > for ail ah e Th„ (D

août 1976.



4 2 R. S. FALK

and

a(uh(aLh\vh) = avh) + <ah,vh> for ail vheThi(Q).

Since

a(uh(Qh)9 uh(ah)-uh(0)) = <ocft, Mft(9ft)>,

we obtain

< uh (9„) - g, ah > = 0 for ail a, 6 Th2 (F) 6)

and

a K (6*), t>*) = ( ƒ, i>*) + < 6A, vh > for all vh e Thl (O). (7)

These are the same équations obtained in [4],
In the next section we describe the notation and the principle ideas to be

used in the dérivation of the error estimâtes.

2. NOTATION

For s ^ 0 let Hs (Q) and Hs (F) dénote the Sobolev spaces or order s of
functions on Q and F respectively, with associated norms ||.||s and |.|s, res-
pectively. For définitions and characterizations of these spaces, the conven-
tions of [6] are adopted. We will also be using the space Hs (F) for s < 0,
normed by

I g |s = SUP -yy~ *

We will need the following facts, proved in [6], with constants C independent
of w,f, and g.

LEMMA 1 : Let we Hk (Q)> k > 1/2. Then its boundary values satisfy

LEMMA 2: Let we Hk (r), k > 3/2. Then there exists a trace ôw/ôn on F and,

dw

~dn fc-(3/2)

LEMMA 3: Let feHk(Q), k ^ 0, g e H1 (F), / ^ 1/2. Then there exists in
H1 (Q) exactly one weak solution of the équation Au = f with boundary
condition u = g, Furthermore, ueHs(Q) where s = min (A;+ 2, /+(l/2)) and
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A RITZ METHOD BASED ON A COMPLEMENTARY PRINCIPLE 4 3

LEMMA 4: Let f s Hk (O), g e H1 (F), l ;> -1 /2 . Then there exists in H1 (Q)
exactly one weak solution of the équation Au — ƒ wit h houndary condition
Bu = g. Furhthermore, ueHs (Q) where s = min (* + 2, /+(3/2)) and

LEMMA 5: Let g e H 1/Z (F) and let ue H1 (Q) be the weak solution of the

équation A u = 0 with boundary condition Bu = g. Then | g | _ i / 2 g C j | M | | t .

Proof: For v e if1/2 (F) let we H1 (O) be the weak solution of the équation
^ iv = 0 with boundary condition u? == i?. Then

^ — = sup ^~—^ sup - " ' 1 " N1

1/2 «eff1 '2^) t? 1 / 2

since

by Lemma 3.
We now introducé the finite dimensional subspaces we will be using in our

approximation scheme. Following Babuska [4] and [5] we will define for
ail 0 < h < 1 two one-parameter families of finite dimensional spaces which
we will dénote S^k(Q) and S^k (r). We call Sf

h>
k (Q) [resp. S^k ( r ) ] a (t, k)

System for t > k ^ 0 [resp. t > k ^ -1 /2 ] if
(Al) S*h>* (fl) c H* (O) [resp. 5^k (r) c JT* ( r ) ] ;
(A2) if

ƒ e H'(Q) [resp. ƒ e r f ( r ) ] and O ^ s g l c g /[resp. - 1 g s g Je ̂  I]

then there exists g G ££> * (O) [resp. g e ^ ' f e ( r )] such that ( | g - ƒ | |s g C A" 11 11
[resp. |g—ƒ |s :g CÂ  | ƒ |z] where \x = min (!~s, t — s) and C does not depend
on s, h, or ƒ Note that the function g may be different for different s.

If the function g can be chosen independently of s, then the System will
be called regular.

Finally we say that the regular System S|'fc (F) is strongly regular if its
members satisfy ] g [s g Qk~^~q) j g \q for —1/2 g q g s g k. Such Systems
are constructed in [2] and [3].

We now proceed with the dérivation of the error estimâtes.

3. ERROR ESTIMATES

THEOREM 1: Suppose feHr~2(Q% ge Hr~(lf2) (T\ and u = «(0) is the
solution of the Dinchlet problem (-jAr). Let uh (9ft) be the solution of Problem Ph

with Thi (Q) a (tu kt) System and Th2(T) a strongly (t2, k2) regular system
with tx â 2, kx è 1, and k2 ^ 1/2. If h2 ^ À»! /^r J5T sufficiently large (K a

août 1976.



4 4 R. S. FALK

constant independent of hx)^ then there exists a constant C independent of h and u
such that

where h = max (Jit, h2) and[i = min (r—l, tt — 1, f2 +(1/2)).

Proof: Since u (9) is the solution of Problem (^-),

< « ( 9 ) - g , a > = 0 for all aeH~u2(T).

By (6),

< uh (0„) - g, a„ > = 0 for all a, e Thl (T).

Hence

< u (9) - uh (9ft), a„ > = 0 for all <xh e Thl (F).

Now

||u(e)-u,(9A)||I

= a(u(Q)-uk(Qh),u(Q)-u(ah))

+ a(u (9) - uh (Qh), u («,) - u (9,)) + a (M (9) - uh (9j , u (9A) - uh (9,)).

We first observe that

a (u (9) - uh (9A), u (ot„) - u (9A)) = < a „ - 9A, u (9 ) - uA(9„) > = 0,

by the result obtained above. Applying the Schwarz inequality to the
remaining two terms and collecting terms, we obtain

By Lemma (4) and Statement 5:

||H(9)-u(o

Hence we obtain

||«(9)

Now by Lemma (5),

| 9 - 9 f t | _ 1 / 2 g C | | U (

Combining. these results, we get

| | | | [ | | / | | | | £ ] . (8)
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We remark that this espression reflects precisely the two sources of error
arising in the approximation scheme. The first term reflects the fact that the
energy functional is being minimized over only a finite dimensional subspace
and the second term occurs due to the fact that the functional itself has been
modified by replacing u (Qh) by its "Galerkin" approximation.

Using the approximation assumption (A2), the first term on the right of (8)
is bounded by Ch»2 | 9 |P_c3/2>9 where \i2 = min( r - l , f2 + (l/2)). The second
term is the troublesome one and is typical of this type of analysis. In this case
the troubles can be overcome by making use of the strong hypotheses we have
made in the theorem about the approximation properties of the subspaces and
their relationship. Now

Since a (u (a) — uh (a)} zh) = 0 for all zhe Thl (Q), we have for zh and vh e Thï (Q)
that

where |ix = min (r— 1, t1 — 1) (by using A2). Now

| |«(e,)-«(e)||2gC|e-e4 |1/2 (by Lemma 4)

g C | 6 -a f c | 1 / 2 + —|a»-9 f c |_ 1 / 2 (by strong regularity)
L h2 J

Applying the approximability assumption (A2), we obtain

Since | e [ r _ ( 3 / 2 and | |«(8) | | r are bounded by C [ | | / | | , _ 2 + | g |r_ (1 /2>] by
Lemmas 2 and 3, we have after collecting terms that for K sufficiently large

août 1976.



46 R. S. FALK

THEOREM 2 : Suppose f e Hr~2 (Q) and u = u (9) is the solution of the Dirichlet
problem ( * ) . Let uh (Qh) be the solution of Problem (Ph) where Thi (Q) is a
(tu k^-system and Thz (F) is a (t2, k2) system with kl ^ 1, k2 ^ 1/2. (Note
that Thz (F) need not be strongly regular.) lf there exists vh e Thy (Q) with
(g-vh,OLhy = 0 for all <xh e Thl (T) such that

where

l̂ i = min(r-l, tt-ï)9

then

where

H = min/ r—l, tt — 1, t2+ j and /i =

Proof: Using the same argument as in Theorem 1, we have

11 « (9) - «» (e„) Ui = a (u (0) - uh(0h), « (9) - u (oj)

Since a (zh, u (0h) - uh (0h)) = 0 for all z^eT^CQ), it follows that for all
v„ e Thl (Q),

a ( « ( 9 ) - ^ (9»), 11(0»)-11,(9»))

~ =a(ii(9)-»»,M(91)-ii»(94))

Since u (0) = g on T and 9fc-otA e r,,2 (r), we have for all vh e Thi (fi) with
< g-vh, ah > = 0 for all ah e rA2 (O that

Revue Française d'Automatique, Informatique et Recherche Opérationnelle
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Applying the arithmetic-geometric mean inequality and Lemmas 1 and 4 we
obtain

[by (A2) and the hypothesis of the Theorem], where u2 = min (r— 1, t2 + (l/2))9

and jij = min (r— 1, ^ — 1). Hence applying Lemmas (2) and (3) we obtain

where \i = min(r — 1, tx — 1, *2-h(l/2)) and A = max (hl9 h2).

REMARK 1 : The practical conséquence of Theorem 2 is most easily
seen in the case g = 0. If one then solves Problem (Ph) using a subspace
Thi (F) which is not strongly regular or where h2 is not related to h1 by the K
of Theorem 1, then uh (Qh) will still be a good approximation to u (0) in the
energy norm provided there happens to be a function in Thx (Q) n H* (Q)
which is a good approximation to u (9). Note that the functions in Tht (Q)
do not have to lie in H^ (Q). Thus, for example, one might expect good nume-
rical results on model problems solved on rectangles even when the conditions
of Theorem 1 are violated.

REMARK 2 : In the case described above (i. e. without the inverse
assumptions and relation between h1 and h2), it is no longer necessarily true
that Qh will be unique. However, from (7) it easily follows that if there is
_any_so±ution Bh to Problem (Ph) then uh (Qh) exists. Furthermore if Qjj, 6^ are
two solutions, then

by (6). Hence uh (0ft) will be unique.
Using the standard technique (e. g. see [4]) we can obtain the following

estimate for the error in L2 (Q).

THEOREM 3: Under the hypotheses of Theorem 1;

where

h = maxC/ij, h2) and \x = minj r — i, tt — l, t2+ - ) .

août 1976.
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