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R.AXR.O. Analyse numérique
(vol. 10, n° 8, août 1976, p. 5 à 37)

ESTIMATES FOR SPLINE PROJECTIONS (1)

by J. H. BRAMBLE (2) and A. H. SCHATZ (2)

1. INTRODUCTION

Let Q be a domain in RN and let S J (Q) dénote the restrictions to Q of tensor
products of splines of order r defined on a uniform mesh of size h in RN;
i. e. in each variable these are piecewise polynomials of order r—l which
have r — 2 continuous derivatives on RN. It is well known that if u has r conti-
nuous derivatives on Q. then there exists a spline in SJ (Q) which approximates u
in maximum norm to order h\ In this paper we shall investigate various types
of interior maximum-norm estimâtes for a variety of projection methods
which use spline subspaces. In particular we shall focus our attention on L2

projections and a class of Ritz-Galerkin methods used in approximating
solutions of elliptic boundary value problems.

This paper may be thought of as being divided into two parts.
Let Qo czcz Ql czcz Q c RN. In the first part we shall first show that if
uh e S* (Q) is the best L2 approximation to u on Q and if u has r continuous
derivatives on Cll9 then in maximum-norm uh approximates u to order H on
any compact subdomain Qo of Q^ We then consider approximations
uh e Sh

r (QJ satisfying a set of interior équations associated with Ritz-Galerkin
methods for elliptic boundary value problems. It is then shown that if r ^ 3,
i. e. forsplines which are at least piecewise quadratic polynomials, the error
in maximum-norm is bounded by a term of order W on Qo (provided u has r
continuous derivatives on Qx) plus the error in an arbitrary négative norm on
£V This last term (which is not present in the case of L2 projections) measures
the effect on the error on Qo due to factors outside of QL (for example the
smoothness of u outside of Q l5 the smoothness of the boundary and the way
a particular method treats the boundary conditions). Assuming for the moment
that this term is of order hr (this is often the case) then our main point hère is
that locally the error is of order hr (in maximum-norm) if u has r continuous
derivatives- Interior L2 estimâtes for best L2 approximation were derived

(*) This work was supported in part by a grant from the National Science Foundation.
(2) Department of Mathematics, Cornelt University, Ithaca, N. Y. U.S.A.
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6 J. H. BRAMBLE, A. H. SCHATZ

in [12] and for Ritz-Galerkin methods in [13]. In [5] maximum-norm interior
estimâtes were derived for Ritz-Gaierkin methods, however the local requi-
rements on the smoothness of u are greater.

In the second part of this paper we shall prove sortie "super-convergence"
results. Briefly, let uh be of the form

w*=!ECa*(/r1x-a), xea, (1.1)
a

where a is a multi-integer, and the i|f (h'1 JC —oc) form a basis for S*. We shall
first show that given any non-negative integer t there exist constants d^
(depending on t ), such that if uh is the L2 projection of u onto S*, then at any
mesh point h y (dist (h y, ôQ) ^ C h), £Caâfy_a approximates u {h y) of

oc

order h provided u is sufficiently smooth. The constants dA have the following
properties :

(i) They are easily computable and depend only on \|/ and t.

(ii) Ail but a finite number of the dn vanish.

Suppose now that we choose the d^ corresponding to / = 2 r - 2 and uh

satisfies the aforementioned interior Ritz-Galerkin équations corresponding to
an elliptic boundary value problem on Q^ We shall then show that if r ^ 3
and hyeÇl0, then £Ca<iY_a approximates u{hy) of order hlr~2 (In l/h)
plus a term bounded by the error in any négative norm onQ^ In many appli-
cations this last term is of order hlr~2, Hence in those cases, a simple linear
combination of the Ca 's gives order h2r'2 (In l/A) at mesh points. It will
then be shown that if r ^ 3 and odd, then for h y e Qo, uh (h y) appro-
ximates u(hy) to order hr+1 (In l/h) plus the error in an arbitrary négative
norm on Q^

In proving some of the above superconvergence results we make use of the
following which we feel is of independent interest: Let Po u and P t u dénote
the L2 and H1 (energy norm) projection of u onto S* (RN), where ue C2r~2

on RN and has compact support. Then in maximum-norm on RN, Po u appro-
ximates P1 u of order h2r~2 (In l/A) for r ^ 3.

An outline of the paper is as follows : In Section 2 we introducé notation
and preliminaries. In Section 3 we prove a maximum-norm error estimate for
the best L2 approximation on RN. This result was first proved by Fix and
Strang [10]. Our method of proof relies on Fourier multipliers and differs
from theirs. In Section 4 a sharp maximum-norm error estimate for Nl

(energy norm) projections on RN is obtained. In Section 5 and 6 we use the
results of Sections 3 and 4 to obtain interior maximum-norm error estimâtes
for best L2 approximations and for a class of Ritz-Galerkin methods men-
tioned above. In Section 7 we obtain a superconvergence result in maximum-
norm for the comparison of L2 and Hl (energy norm) projections on RN.

Revue Française d*Automatique, Informatique et Recherche Opérationnelle



ESTIMATES FOR SPLINE PROJECTIONS 7

In Section 8 superconvergence results at interior mesh points for L2 projections
and a class of Ritz-Galerkin équations by "averaging" the computed coefficients
are considered. In Section 9 we investigate the question of superconvergence
at interior mesh points for L2 projections and a class of Ritz-Galerkin équation
without averaging. In Sections 10, 11, 12, and 13 we exemplify the theory in
special cases. In one of our examples we consider the interior rate of conver-
gence in maxjmum-norm of the approximate Green's function to the Green's
function. We show that away from the singular point the rate of convergence
is of order hr. We wish to emphasize that the technique used in the proof
is not special to the spline functions discussed in this paper nor the particular
Ritz-Galerkin method used. It relies only on the fact that good interior maxi-
mum-norm and certain negative-norm estimâtes are available, the former
being proved hère for special spline subspaces. We then apply this resuit to
dérive order hr estimâtes in régions where u is smooth but outside of which
it might be quite badly behaved. This seems to indicate that the effects on the
interior rates of convergence for Ritz-Galerkin methods due to either a non-
smooth boundary or a non-smooth right hand side are quite different.

2. PRELIMINAIRES

Let Cl be an open subset of RN, TV-dimensional Euclidean space. Let Ck (Cl)
be the set of complex valued functions on Cl which have continuous partial
derivatives of order at least k, which are bounded on Cl. On Ck (Cl) we introducé
the norm

I^U.Ö = SUP \D"v(x)\,

N

where a is a multi-index and Da = dajdx^... dajdx*j* and | a | = £ a,-.
7 = 1

If Cl is bounded then by Hk (Cl) for k a non-negative integer we shall mean the
usual Sobolev space of order k\ i. e. Hk (Cl) is the closure of Ck (Cl) in the norm

D«v\2dx)lf\ (2.1)
/

If Q = RN, then Hk (Q) will be the complection of Ck
q (Cl) under the norm (2.1).

Here Ck
0 (Cl) consists of those functions in Ck(CÏ) with support contained in Cl

and compact. We shall dénote the norms on Ck (RN) and Hk (RN) by |.|k
and ||. \\k. Note that H° (Cl) = L2 (Cl).

We shall also need the following norms: For v e L2 (Cl):

IHI-...- »P fe^
août 1976.



8 J. H. BRAMBLE, A. H. SCHATZ

where (u, cp)n is the L2-inner product. We also set

| - k , n = S U P
<p||fc,n

REMARK: The above définitions of norms may be extended to ail real
values of the indices by appealing to the theory of interpolation spaces (cf. [7]).
For the sake of simplicity we shall not discuss this generalization and thus to
be précise will consider throughout this paper only integer values for the
norm indices.

For a given positive integer r we dénote by \|/ (x) the 5-spline of order r
(cf. [14]). This function is the r—1 fold convolution of the characteristic
function of the unit cube with itseif. More precisely let

and x(f) = ÖC * • • • * x)> where * dénotes convolation. Then

r - 1 times

Since v|/ will be so frequently used and r will always be fixed we have suppressed
the dependence on r in the notation.

Dénote by ZN the multi-integers and let H e a positive number less than l.

DÉFINITION: For r a positive integer and h given with 0 < h < 1, a function v
of the form

v(x)= E v^ih-'x-d) (2.2)

is called a spline of order r. The totality of all such functions will be denoted
by Sh.

Note that since the support of v|/ is compact, for any x the sum in (2.2)
contains only a finite number of non-vanishing ternis so that no restriction need
be placed on the pa. The splines of order r have the following well known
properties :

(a) They are piecewise polynomials of degree r—1.

(b) They are of class C ~ 2 .

In addition to these, the splines possess some important approximation
theoretic properties. We summarize these as follows.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



ESTIMATES FOR SPLINE PROJECTIONS 9

LEMMA 2 . 1 : Let v e Hs (Q) with 0 ^ s ^ r. TAew f/??re ?XMT5I a constant C
and vhe Sh such that

for 0 ^ j £ s, j ^ r — 1. 7#e constant C does not depend on v.
For the proof of this, cf. [9] or [2].
In addition to this the splines also have similar properties relative to the

norms on Ck.

LEMMA 2.2: Let veCs with 0 S s ^ r. Then there exists a constant C,
independent ofv, and Qh v in Sh such that

\v-Qhv\0^Chs\v\s.

Further, ifveC% then Qh v e C£.
For a proof of this, cf. [6].
Let ƒ G Lp with 1 ^ p ^ 2. Then the Fourier transform of/is given by

C
ƒ (4)= f(x)e~l<x'^>dx, a. e.

IV

where < x, Ç > = J] xs ^ (c/. [15]). The inverse transform ƒ (Ç) is given by

and î f / ^ ^ p > T ^ P ^ 2 then ƒ = ƒ lt is also well known (cf. [16]) that
there exists a constant C such that for 1 <>p ^ 2, (l//?) + (l f p') = 1
and / e L p ;

a
.Let m be a bounded measurable function and ƒ e L2. Then the transformation

is called a Fourier multipier transformation (c/! [15]). Notice that TmfeL2

DÉFINITION: A multiplier m belongs to the class M'p for 1 g p ^ oo if there
exists a constant Mp such that for ƒ e L2 n Lp:

y | / | / P if

août 1976.



10

or

It is well known that for (1//O + ( W ) = 1, ^ p = ~#p- We shall be mainly
concerned hère with multipliers in Ji'o0. The following gives a simple condition
under which m e Ji^.

J. H. BRAMBLE, A. H. SCHATZ

Tmf |o S Mm\ ƒ |o if p=co.

F f[ (1+3/5TV)W1LEMMA 2.3: Suppose that Y\ (^+d/ôr\j) m \eLp for some p with

1 < p <L 2. Then m e M^

Proof: For ƒ e L2 n C°

Hence it is clearly sufficient to show that me Lx. Now

f \m{x)\dx=\ dx.

Let 1 < p S 2. Then by Hölder's inequality

I m (x) | dx <;

The lemma now follows from (2.3).

ai P' \1/P'

3. THE L2-PROJECTION ON RN

Let u e CQ. We define Poue Sb as the L2 projection of u onto Sh nL2l i. e.,

Vq>GS*nL2. (3.1)

Note that although Po dépends on A and r we have suppressed this in the
notation.

Now since Po u e Sh, it is given by

We now prove the following.

LEMMA 3.1: Let ue Cr
0 and set uh (x) = u (hx). Then

(3-2)

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



ESTIMÂTES FOR SPL1NE PROJECTIONS 11

where

0 e ^ œ .

Proof: It follows from (3.1) that

and by changing variables

Z «?(*
Y E Z ^

Multiplying by e~'<M> and summing over (3 we obtain

Applying the Poisson summation formula we obtain

( Z ^ ^ ' ^ W ï l ) ^ Ew«*(Tl + 27Cp)̂ (Ti + 27cP). (3.3)

Now

(3 .4 )
" ( 2 T I ) N J C

where C = \ ri I n , < n, j = 1, . . ., N f.

Hence from (3.3) and (3.4) we have

1 r L ui

1 ̂ n ao(r[)

Using the periodicity of a0 (r\) and the exponential, (3.2) follows by changing
variables.

That m0 e Jim follows from the form of m0. Now m0 — \j//û0, where

Hence

Since ^ (2 sin tj2)l(t + 2nl)2r, for r e /î1, is a smooth periodic function
/eZ1

which never vanishes, in order to satisfy the conditions of Lemma 2.3, it is

août 1976.



1 2 J. H. BRAMBLE, A. H. SCHATZ

enough to observe that ((sin t/2)/t/2)r and its first derivative are in L2 (R
x).

Hence m0 e M oc.
The eprevious theorem provides us with the basis for a different proof of

a resuit first proved by Fix and Strang [10].

THEOREM 1 : Let ue Cs
0 with 0 ^ s ^ r. Then there is a constant C independent

ofu such that for any h,0<h< 1,

Proof: Let Qhue Sh be given by Lemma 2.2. Then

\u-Pou\o£\E\o + \PoE\o. (3.5)

where E = Qhu — u. Now

(P0E)(x)= X EÎW1X-OL)

and hence
| P 0 E | 0 ^ sup |Ea°|. (3.6)

aeZ*

By Lemma 3 . 1 :

£?= ' f B.»oe'<-'>in.
(2n) JR"

and since m0 e M ^

| £ a ° | ^C |£ | 0 . (3.7)

From (3.5), (3.6), and (3.7) it follows that

\u-Pou\o^C\E\o.

The theorem follows now from Lemma 2.1.

4. i^-PROJECTIONS ON RN

N

Let D (v, w) = Y, {àv/dxj, dw/dxj). We want to consider the projection

operator Px u e Sh n H1 for u e Cs
0, s ^ 1, where Pt is defined by

£>(«-?! M, 9) = 0, V^eS^Ü1. (4.1)
We now prove the following.

LEMMA 4.1 : Let r ;> 3 a/?</ M e Cs
0 with s ;> 1. T/z^ P^eS*1 n i/1 exw

7> unique. It is given by

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



ESTIMATES FOR SPLINE PROJECTIONS 1 3

with

where

mx = \ j r ( r | ) j i i | 2 / a 1 ( r i ) and al(r\)= £ | ^ (T1 + 2 n a ) |2 | n + 27roc | 2 .

Finally ml e J(m.

Proof: By a calculation similar to that made in the proof of Lemma 3. 1
the coefficients defined by (4.2) uniquely define a solution of (4.1). The only
remaining thing to prove is that m1 G J$m- The proof in this case is more
delicate than that of m0 since mx is not a product of functions of one variable.
Hence the N-dimensional case is not just an obvious generalization of the one
dimensional case.

To prove that mx e M^ we shall apply Lemma 2.3. In order to do this we
shall show that

Ôkm' -GLP for K p < I + J _ ,

k = 0, ...9N w i th A 0 = I.

Because of the symmetry of mv it will then follow that

1
mte Lp, l < p <

W - 1

and hence_mi_e_!̂ _ÛQ^_
We write

N

where S2 (n) = £ sin2 r\j/2 and first calculate Ak (I n/2 !2/^2)

Now

}!s2

t uln/?l2r ^ ^ n

— 2 n sinrjJ/2cosnJ/2— ^ r|,/2 f ] sin r|;/2 cos x\J2 .

Hence by elementary estimâtes we have for a suitable constant C

; C ( l + S2"^) for | i l ; | ^ K , . ƒ = ! , . . . , N . (4.3)août 1976.



14 J. H. BRAMBLE, A. H. SCHATZ

If I n / i > n for some / then we have

Ak\

Now we obtain by a tedious calculation

I Ak \|/1 ^ CSk, O^ /c^ iV if |

and if | n, | > n for some /

and

^CS'-1 fi l<k<N.

(4.4)

N, (4.5)

(4.6)

(4.7)
i+h,r

In order to estimate Ak (\j) ( I r\/2\2/S2)) we use Leibniz' rule. Because of
symmetry we may observe that the above estimâtes for Ak ( | n/2 \2/S2) and Ak vj/
are valid for any purely mixed derivative of order k. Hence in the case that
i j]j | g K for y' = 1, . . . , N, we combine (4.3) and (4.5) to obtain

1 (4.8)

But the same estimate (4.8) in the case ' n, • > n for some / follows
from(4.4), (4.6) and (4.7).

We need yet to estimate Ak (S2/al). To do this we first estimate

where we have used the fact that S{r\) = S (n + 2 n a) for a e ZN. Now \j/ 2

is just (v|/ * \|/)~ so that we may apply the estimate (4.8), interpreting v(/ as
the i?-spline of order 2 r, to each term of the sum in (4.9). Hence, since r ^ 3

l~k). (4.10)

Now (4.10) holds for any purely mixed partial derivative of order k.
Since aJS2 is bounded away from zero, it follows by an easy induction
argument, using Leibniz' rule again that for an appropriate constant C

k). (4. I l )

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



ESTIMATES FOR SPL1NE PROJECTIONS 15

Again (4.8) and (4.11) are valid for any kxh order purely mixed partial
derivative and hence by Leibniz' rule again it follows that

k)

Finally we see easily from this estimate that since r ^ 3,

CSl

Now for 1 </? < 1+[1/(N-1)]

n h+P- rfr.

RN,sl 1
l \ l + \y\j + 2n*j\

For r| e Cn we have, for an appropriate constant C,

and

Hence from (4.13), (4.14) and (4.15) we obtain

'dr,

1

J R» j-* ï \ dn,- /

(4.12)

(4J3)

(4.14)

(4.15)

The right hand side is bounded for 1 < p < 1 +[1/(7V- 1)]. Thus we have,
from Lemma 2.3, that mi e M^ and the proof of Lemma 4.1 is complete.

We now prove a maximum-norm estimate for u~Pl u.

THEOREM 2: Lei ue Cs
0 with l <, s ^ r and r ^ 3. Then there is a constant C,

independent of u, such that for any h, with 0 < h < 1,

C/TS |M (4-16)

août 1976.



16 J. H. BRAMBLE, A. H. SCHATZ

Proof: Let Qhue Sh be given by Lemma 2.2. Then

l u -P^ jo^Elo + iP^lo, (4.17)

where E = Qhu — u. As in the proof of Theorem 2, since by Lemma 4.1
m1 e Jt„, it follows that

| J P 1 £ | 0 ^ C | £ | o - (4.18)

Hence from (4.17) and (4.18)

The inequality (4.16) now follows from Lemma 2.1 .
With only technical changes in the arguments we can prove the following.

The details will not be given.

THEOREM 3: Let ue Cs
0 with 1 ^ s ^ r and r ^ 3. Let q be a non-negative

constant and Plue Sh n H1 be defined by

-Piu, (p) = 0 for ail

Then there is a constant C, independent ofu, such that for ail h, with 0 < h < 1,

{u-P.ulo^Ch'lul.

5. L2 (Q)-PROJECTIONS AND INTERIOR ESTIMATES

Let Qo be an open subset of Q whose closure is compact and contained in Q.
We write this as Qo cc= Q. Let Sh (Q) dénote the splines of order r restricted
to Q. The space Èh (Q) consists of those éléments of Sh (Q) whose supports
are contained in Q. We shall need the following lemma which may be found
in [5] .

LEMMA 5 .1 : Let Qo c c Çlx cza Q, and suppose that uhe Sh (Q) and
satisfies (uh , <p) = 0 for all cp e Sh (Q). For any positive number y, fixed but
arbitrary, there is a constant Cy , independent ofuh , such that for h sufficiently
small

|w/ , |o ,n o ^ C Y / l Y |K | |o , îV

With this lemma we may prove the following:

THEOREM 4: Let ueL2 (Q) n Cs (QJ, 0 ^ s S r, r ^ 1 and let Poa u e Sh

be the L2 (Q) orthogonal projection onto Sh (Q); /. e, (u~Poa u, cpj = 0 for
ail (p e Sh (r). Let Qo czcz Qt c e Q. Then there is a constant C, independent
of uy such that for sufficiently small h

Revue Française d*Automatique, Informatique et Recherche Opérationnelle



ESTIMATES FOR SPLINE PROJECTIONS 17

Proof: Let Qo c e Q2 c c Q1 c c Q. We multiply u by a suitably chosen
function co e C£° (Qt) which is equal to 1 on Q2 and set M = ÛD M on RN. Evi-
dently then u e Cs

0 if u e Cs (QJ and

\u\s^C\u\s>iii (5.1)

for an appropriately chosen constant C which does not depend on u. Now
also

| |« | |o^C| |u | |o , f t . (5.2)

Then

| " - i ' o i û « k o o ^ l 5 - p o S | o + |i>o5-^oPn«|ofoo- (5.3)

Since (Po " — Po n w, (p) = 0 for ail <p e Sh (Q2)
 w e obtain from Lemma 5.1,

with y = s and'(5.2), that

^C.fc'llullo.Q. (5.4)
From Theorem 1 and (5.1) we obtain

|S-P 0 « |o^Cfc ' |« |^ a i - (5.5)

The theorem now follows from (5.3), (5.4) and (5.5).

6. INTERIOR ESTIMATES FOR RITZ-GALERKIN METHODS

In order to study the maximum-norm of the error in various approxi-
mations to boundary value problems we want to give now a local analogue
of Theorem 2. We first need a special case of a lemma which may be found
in [3].

LEMMA 6.1: Let p and q be arbitrary positive numbers. Then there exists a
constant Cp such that, for Do c e Qt c e Çl, h sufficiently small and any
uh e Sh (Q) satisfying

<v) = Q (6.1)

forall<peSh(Q),

k|o,«o^CIKi|-p,nr
We may now prove:

THEOREM 5: Let ueCs (QJ, 1 g s S r, r ^ 3 and Pua ueSh (Q) satisfy

D(u-Puiiuy (p) + ̂ (u-P1>ftw, <p) = 0 for ail <peS*(Q0),

août 1976.



18 J. H. BRAMBLE, A, H. SCHATZ

with Qo cici Qj c:c= Q and q a non-negative constant. Let p be a given positive
number, Then there is a constant C, independent ofu, such thatfor h sufficiently
small

\u-PUçiu\OtÇÎQ^C{hs\u\Si^ + \\u-PitÇïu\\.PtÇil), (6.2)

Proof: Let Qo c c Q2 c c Qj and let u be the extension of u of RN given
in the proof of Theorem 4 with u = u on Q2- Then

,nHo.no- (6-3)

Since Z> (Pj w - P i n w, q>) = 0 for ail <p e S* (Q2) we have from Lemma 6.1
that

\ \ \\-PU€iu\\-p,nr (6.4)

The theorem now follows from (6.3) and (6.4) using the estimate of
Theorem 2 or Theorem 3.

7. COMPARISON OF L2 AND H1 PROJECTIONS

In Sections 3 and 4, it was shown that u — Pou\o = O (hr) and
| M - P t u jo = O (hr). Hère it will be shown that

(for sufficiently smooth u). This superconvergence type resuit will be used
repeatedly in the following sections.

THEOREM 6: Let r ^ 3. Then there exists a constant C independent of h and u
such that

(i) If u e C1 :

| P o u - P l W | o : g C / z ' | 4 , l = h, . . . , 2 r - 3 . (7.1)

(ii) Ifue C2r~\ N = 2 and r odd, or N = 1 ;

\Pou~PlU\o^Ch2r~2\u\2^2. (7.2)

(iii) If u e C2r~2 and supp (M) e A a compact set

- ^ | 2 r _ 2 . (7.3)

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



ESTIMATES FOR SPLINE PROJECTIONS 19

Remark: By an entirely different method we can obtain an estimate for
P0u~P1uoî order h2r~2 without the hypothesis that u have compact support
and without the factor In If h, which improves the order of convergence in (7.3)
in the cases not covered by (7.2). The alternative proof requires a somewhat
stronger norm on u on the right hand side. The proof of this will be omitted
hère since one of our purposes hère is to obtain the best norm we can on the
right hand side relative to the order of convergence.

Proof: By Lemmas 3.1 and 4.1 we have that

- ^ i w | o ^ S U P
ce e ZN (27T)W ƒ. (7.4)

Let w (y) be a function of the single variable y be such that w (y) = 1 for
\y\ < n/2, w(y) = 0 for \y\ ^ n and J e C 0 0 . Set ws = W(T)J)9J = 1, . . . , N

N

and w = Y[ wj- ^ e s n a ^ n o w estimate the right hand side of (7.4).

N

Since 1 — y[ wj vanishes near the origin, it follows that for the second

term on the right hand side of (7.5) we have

(7.6)

It follows from Lemma 2.3 that for each j , Y[wi(^~wj)T\Tle *^<*>-

Since Jtœ is a Banach Algebra and mo—mx e ^ ^ we have that
Y\ wi(l—Wj)T\yl(mo—ml)€ Jt^. Hence for some appropriate constant C

we have

(7.7)1 = 0, ...,2r-2.
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Let us now estimate the first term on the right hand side of (7.5). To this
end we examine carefully the multiplier w(mo — mx) near the origin. Now

mo-mx = m J -1—LU—l \ = ml\ -±-±±1—° ,

where a0 and ax are defined in Lemmas 3.1 and 4.1 , af
Q = a0— | v|/ I2 and

^ = a! —| "n |2 | \ j / | 2 . By inspection we see that there are functions ƒ} (T|)
and gj (t|) in C°° such that

a'olao= £ (sinV2)2r / / n )
I

and

h|"2a'i/«o = h l " 2 I (sinîi,/2)2r
gi(iD. (7.8)

Hence

^ V i C î l ) " » ! . (7.9)

Let ^ ; h be the divided différence operator

Now for any positive integer k, ik (sin T|y/2)k ûh — hk(dJhu)h. Hence we
obtain

= h1 £ (- î)1 f (sQ)lü (si

For each y we have that wfjm1e Jt ^ and therefore

| ! 2 | ^ C / z 2 ' £ l a f M l o g C f t ' 1 4 , / = 0, . . . , 2 r . (7.11)
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Let us now consider for fixed j one term of Ix. If 0 g / ^ 2 r — 3 then
2 r - / è 3 and it follows that

Hence for some constant C:

7 = 0, . . . , 2 r - 3 . (7.12)

Combining the estimâtes (7.4) through (7.12) we obtain the estimate (7.1).
Let us now prove (7.3). To this end set / = 2 r—2 in (7.10). Hence Ix

becomes

(7.13)
j ~ 1 J R

Let us fixy and look at a typical term. Set (dj^2 u\ = vh and

p(x)=[ r(x-y)vh(y)dy, (7.14)

J R

where F is the fundamental solution of the Laplace équation so that

— Ap = vh in RN.

Ciearly then I r\ I p2 = vh. Hence for an appropriate constant

J RN

I (d? i p) wg/Oi) mi
JR»

(7.15)

where we have used the fact that wgj m1 G Mm. Finally, we need to
estimate |3j f lp|o- Using the fact that diam (supp vh) ̂  C/h for some
constant C (depending on the support of u) we obtain by elementary estimâtes
that

|a 2
) 1p| oâClnl / / î |z ; | o^Clnl / / i |a j

2
t
r
f t W | ogClnl / / i |W | 2 r . 2 . (7.16)

Combining (7.16), (7.15) and (7.13) with (7.4) through (7.11) we obtain
the desired resuit (7.3). Let us now briefly consider the inequality (7.2),
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where N = 2 and r an odd integer, r ^ 3. We proceed in the same manner
as in the proof of (7.3) except that instead of (7.8) we can write

1-2 (7.17)

where g,- (r\) eC00 , lim gy (r|) = 0 as | r| | —• 0 and S2 is defined Section 4.
Hence instead of (7.10) we obtain

u
= (-l/-1

k = 0

:-iY-lh2'-21
J = I

f (ajî^i)*sin2njl2g;(ÎI)| n |"2 wm, e'<«• ">dti

(7.18)

where I2 has already been estimated in (7.11).
Since wmx (S

2/ \ r\ |2) e Mx we obtain

It is easily seen that wmt sin 2r\j/2 gj (y\) ] r| |~2 e Jt^ and hence

\2r-2-

Combining (7.18), (7.19), (7.20) and (7.11) we have

)U"W m ° m' C

(7.19)

(7.20)

(7.21)

In view of (7.4), (7.5), (7.7) and (7.21) we obtain the desired resuit (7.2),
where the case TV = 1 is straightforward and therefore will not be presented.
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8. SUPERCONVERGENCE AT INTERIOR MESH POINTS USING LOCAL
AVERAGES

Suppose that in a domain Q, uh is computed as an approximation to the
solution u of a boundary value problem using a Ritz-Galerkin method. Suppose
further that on some domain Qt <=<= Q, uh is of the form

u^^CAih'1 x-oi).

In practice, the C; s are first computed and then for fixed x, say for example
at a mesh point x = h y e Qo cic: Q l s the approximate solution is computed
by forming

where all but a finite number of the ar] vanish. In gênerai, the best one to expect
is that the error locally in maximum-norm is of order hr. We shall show that
if we restrict our attention to mesh points h y e Qo, then under rather gênerai
conditions one can find constants say d^ which are easily a priori computable
(they depend only on \|/ but are independent of h and u), all but a finite number
of which in gênerai vanish and £ Ca dy_a is in gênerai closer to u (h y) than
is uh (h y) for any h y e Qo. In order to construct such constants we need some
preliminaries.

LEMMA 8 .1 : Let t ^ 1 and r ^ 1 be arbitrary but fixed integers. There
exist uniquely determined real constants kj , j = 0, . . . , t—l, which satisfy
the linea r algebraic System of équations

if m = 0,

where v^ (y) is the one dimensional B-spîine of order r defined in Section 2.

Proof: Since \|/x (y) is an even function and \|/x (y) dy = l, the functions
JK1

= f
J *1

are monic polynomials of order m in the variables z2 and hence are linearly
independent. Since the matrix { gmJ } corresponding to the linear System (8.1) is
given by gmJ = gm (j ), j = 0, . . . , t-1, m = 0, . . . , * - 1, it follows that { gmj }
is nonsingular which complètes the proof.

Set

k'o = k09 kfj = kjj2 and k.j^kj for j = 1, . . . , t - l . (8.2)
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Then the k'j satisfies the équations

-{t

For xeRN define

j=-{t-i) JRI {v H m —

' l \ (8.4)

LEMMA 8.2: Let Qx be the cube with sides of length (2 t+r) h centered at x
then

| u (x) - ( X ? * il) (x) | ^ C /i2f | u |C2, ( a c ) ,

where C is independent of h and u.

Proof: Without loss of generality we may assume x = 0. Note fîrst that it

follows from (8.4) and (8.3) in the case m = 0 that ( K2
h

t(x)dx = 1.

Hence
f

u (0) - {Kl' * u) (0) = f Kl' (y) [u (y) - u (0)] dy.
JR"

Using Taylor's theorem we obtain

\u(0)-(KÏ*u)(Q)\

a !
K2

h'(y)y"dy + C*2 f |«|C a e ( O x ) .

We shall now show that the first term on the right hand side vanishes.
Since K*T (y) is an "even function with respect to each variable x{ separately,
it is easily seen that in order to prove the lemma is sufficient to show that

Ï k'j^l(h~1z-j)z2mdz = 0, m = l, . . . , t - l . (8.5)

But

and (8.5) follows from (8.3) which complètes the proof.
Set k'j = 0 for \j , ^ t and for any p e ZN, let

fcp= E[fc'Pj. (8.6)
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We may then write

(JeZ*

If 7 e ZN and in a neighborhood of the point h y we are given y (x) of the
form

then

{K2
h

t*v)(hy)= £ »a[/T
N X

= I Mr-., (8.7)
where

and (\|/! * i|/x) (x) is the 5-spIine basis function of order 2 r.

The ^n are the constants referred to in the beginning of this section. Let us
list some of their properties :

1) The d^ are formed by products of the d'^ and hence may be easiiy com-
puted from the one dimensional case.

2) Ail but a finite number of the d vanish.

3) The dr] are independent of h. They depend only on \|/ and t.

We are now in a position to prove a superconvergence type resuit at mesh
points for the L2 projection.

Let Qo c c Qj c îî ç RN, Let

be the L2 projection of u onto Sh (Q).

THEOREM 7: Let t ^ 1 be an arbitrary but fixed integer and Q.^ <=c: Q} c fi
be any domain {which may depend on h) such that

dist(Q0,
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Then for h sufficiently small

sup t«(/iY)-L«X-,|£C*2 '|«|2,.Ol. (8-9)
h y e SÏQ a

Hère the fixed constants d^ \_given by (8.8)] and C are independent of u, h, Qo

and Q1.

REMARK: (8.9) says that by taking an appropriate linear combination
of the computed coefficients w£ as approximation to u one can achieve arbi-
trary order of accuracy at the mesh points.

Remark: The error estimate dépends only on the values of M in a
(\/2)/y/N(2 t+r) h neighborhood of Qo- In particular if we take Qx = Q,
then (8.9) gives us an estimate valid at mesh points whose distance from ôQ

Proof: Using (8.7) and (8.8) we have

sup \u(hy)- E u X _ J ^ SUP \u(hy)-(K2
h\u){hj)\

hy eQ.0 <teZN h y e O 0

+ sup \(KÏ'*[u-P0,nu](hy)\. (8.10)
hyeQo

Now by Lemma 8.2 we have for h sufficiently small that

sup \u(hy)-(K2
h
t*u)(hy)\SCh2l\u\2tt(ïr

h yefio

We shall show that the second term on the right of (8.10) vanishes. In fact
for h sufficiently small

ne z*

which complètes the proof.
We shall now prove an interior superconvergence resuit for Ritz-Galerkin

methods. We shall need the following well known resuit for the L2 and Hx

projections on RN. They are proved using the duality argument of Nitsche.

LEMMA 8.3: Let ue Hr then

H—P0«||-r £Cfc*||«|| r, \
| |« -P 1 u| | a . r gCA 2 ' - ï | | i . | | r . J
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Let u and Pt Q satisfy (6.2) where for ̂  c e Q. Px ft u is of the form

P 1 J Q M ( X ) = £ wJ^Kfe"1*-**) for XGQ^
aeZ*

THEOREM 8: Let Qo czez Qly ue C2r~2 (Qt), r ^ 3 and p be an arbitrary
but fixed non-negative integer. Let d^ be chosen according to (8.8) with
t = r-l. Then if N = 1 or N = 2 and r is odd

sup \u(hy)~
y/ieflo «

In ail other cases

y /Ï E

\_Ptai). (8.12)

| _ , . Q J , (8.13)

C /.? a constant which is independent of h and u but in gênerai dépends
on Qo, Qt and p.

REMARK: If r + 1 < / < 2 r — 3 is a given integer, u G C' (QJ, and
the ^ are chosen with t = 1/2 if / is even or / = (/+1)/2 if / is odd, then the
same method of proof will yield

sup |« (8.14)

Proof: Let

sup \u(hj)
h y

^ Then

\u(hy)-(K2
h'-

2*P0u)(hy)\

In view of (8.9):

ŝup \u(hy)-(K2r-2*P0'u)(hy)\SCh2r-2\u\2r_2tCll.

We note that

(8.15)

(8.16)

where C is independent of h and w. Hence from Theorem 6

<C

î.2r-2|

2r

if N = 1 or N = 2
and r is odd.

otherwise.
(8.17)

août 1976.



28 J. H. BRAMBLE, A. H. SCHATZ

Now

| ^ r - 2 » ( P 1 S - p l f ö M ) | 0 i n o g c | p 1 S - p 1 , n u | 0 > o

Now using Lemmas 6.1 and 8.3 we have, choosing p ^ 2 r,

^ C h 2 r | | u i | r ( O l + | | i i - P 1 ( O i i | | . P i ö I ) . (8.18)

The inequalities (8.15), (8.16), (8.17) and (8.18) imply the desired resuit.

9. SUPERCONVERGENCE AT INTERIOR MESH POINTS

In this section we shall investigate the error u(hy)-P0 n(hy) and
u (h y) — P1>a (h y) at interior mesh points. We shall show that if r is odd then
the order of convergence at interior mesh points is «essentially" (for a more
précise statement see Theorems 9 and 10) one order higher than predicted by
Theorems 4 and 5 respectively.

LEMMA 9 . 1 : Let u s C° n L2. Then

[û^ïl^^ (9.1)
(2n)N

with

and m0 is defined by (3.2).

Proof: We have that

with wg given by (3.2). Hence

The lemma now follows on noting that
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THEOREM 9.1 : Let r è 1 be oddand ueCr+1 n L2. There exists a constant C
independent of u and h such that

sup\Pöu(hy)-u(hy)\^Chr+1\ul+l. (9.2)
yeZ*

Proof: Let w e C °̂ be such that w (n) = 1 for | n | ^ n/2 and M; (t|) = 0
for | T) | > 7c. Then using Lemma 9.1 we may write

Pou(hy)-u(hy)

(9.3)

Now

>H\\ l /mo-i = v|/m0

It is easy to see from Lemma 3.1 that

N

(9.4)

where the gs are entire functions and gj (r\) = 0 (T| jr) as r\j —> 0. Using the
Poisson summation formula we have

Then if r ;> 2 and I x\ I S n/2

i-h
7=i i+(i!/X(-i)'(n,+27i/rp'

1*0

Now the function £ (—l)/(r|J. + 2 7i/)~r is an odd function and hence

C ( - O' (T|> + 2 TT / ) " r = O (i}j) as Tiy -* 0. It then follows that for n ^ K/2

where the Gj (r|) are analytic for | T| | g n and G,- (r|) = O Cnr+1) as r|y —• 0.
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Therefore

where w>/}/r̂ +1 is in C™ (RN) and hence is in
the right hand side of (9.3) we obtain

Ji^ Now for the first term on

L1

VII

hr+1 I f
J = I J

c f c r + 1 . î

-iy<

RN\ ÔXj

d'+lu
OXj n

(9-5)

For the second term on the right hand side of (9.3), we observe that since

m0 e M^ and since \j/ (1 — vo)\\ TJ | r + 1 e C00 , it follows from Lemma 2 .3

that \J/ m0 (1 — w)l\ r\ \r+1 G JtQ0. Finally it is easy to see that

(1-«0/1 il T'eur*.

Hence the second term is estimated C hr+l j u I and the theorem follows
in the case that r ^ 3.

The case r = 1 can be treated by elementary means. In this case the projection
is totally local and

[ [u(x)-u(hy)]dx.
\xJ-yJ\ %

The assertion now follows using Taylors theorem.
We shall now prove a local version of Theorem 8 and then an analogous

resuit for Ritz-Galerkin methods.
Let Qo c e Çlt czez Q and P o a be as is Section 5.

THEOREM 9: Let r be odd and u e Cr+1 (Qx) n L2 (Q). Then for ail h suffi-
ciently small

sup (9.6)

where C Is independent of h and u.
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Proof: Let u be as in the proof of Theorem 4. Then

sup \u(ha) — Po,au(ha)\ = SUP |2(fca) — Pou(ha) |
h a e £2o Acte Ho
«eZ^ a eZw

+ sup j Fo
i a e

In view of Theorem 8 we have

sup \u(ha)-Pou(ha)\^Chr+1\u\r+l^Chr+1\u\r+itai.

Using Lemma 5.1 with y = r+1» it follows that

The desired resuit now follows.

THEOREM 10: Let r ^ 3 be odd and u e C r + 1 (Ùt). Then for ail h sujficiently
small

s u p \u(ha) — Piau

|4,nl + ||w-i3i,nHl-p,n1X r = 3f

otherwise. j

/? w Ö« arbitrary but fixed positive integer and C is a constant which i$
independent of u and h,

Proof: Let u be as in the proof of Theorem 9. Then

sup \u(ha)-PltÇîu(ha)\

s sup

The first term on the right has been estimated in Theorem 9 :

s u p \u(ha)-Pou(ha)\ ^ Chr+I\u\r+1 g C / i r + 1 1 w | r + 1 > n i '

In view of Theorem 6

/î4(lnl/70|w|4iO] if r =
| / i r + 1 |w | r + l j Q l if r = 3 and JV = 1, 2 or r |
( and odd and N arbitrary.
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Using Lemmas 6.1 and 8.3, it follows that for fi0 c e il'o c e Çil:

Taken together, these inequalities imply (9.7), which complètes the proof.

10. THE NEUMANN PROBLEM

Let M satisfy

= ƒ in Q, (10.1)

— = 0 on dQ, (10.2)
dn

where Q is a bounded domain with smooth boundary ÔQ, A is the Laplace
operator and ô/dn is the outward normal derivative on d£l. The function ƒ is
assumed to be in HS(Q) for appropriate s. It is well known that u is characte-
rized as the solution in H1 (Q) of

for all <pe H1 (Q). Hère (w, q>) is the L2 {Q) inner product and

£ / ou ô(p\
D (u, cp) = 2J > —- 1 •

j - i V ô ^ . dxjj

Now the Ritz-Galerkin approximation uh e Sh (Q) to u is characterized by

for ail <p e S* (Q). It was shown in [6] that the estimate

n (10.4)

is valid. Hence we may apply Theorem 5 (with q = 1 and PlOu = uh) to
obta in a m a x i m u m - n o r m estimate on an arbi trary compact subdomain Qo

of Q. In T h e o r e m 5 we take p = 2 — r, r ^ 3 and combine (6 .2) and (7.4) to
obta in

n ) . (10.5)
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If we confine our attention to interior mesh points h y e Qo, then com-
bining (10.4) and (9.7) we obtain the following "superconvergence" resuit:

(i) If r = 3 and N = 1,2 or if r ^ 5 is odd and N arbitrary (but fixed)

sup \u(hy)-uh{hy)\SChr+i(\u\r+ltai + \\f\\0$n). (10.6)
hyeQo

(ii) If r = 3 and N ^ 3:

sup iu(ft7)-«*(/>Y)|^C/ î
4(lnl/ft)(|M|4(ni + | | / | | 0 ) . (10.7)

Now suppose that for xeQ, uh is of the form uh = £ C\ i|/ (A"1 x-a).
Let the constants dn be chosen satisfying (8.8) with t = r— 1. Then from
Theorem 8 we have the following:

(i) If N = 1 and r £ 3 or N = 2 and r ^ 3 is odd

sup | W ^ Y ) - E C a d y . a | ^ C ^ - 2 ( j t i | 2 r . 2 , n i + | | / | t 0 ) . (10.8)

(ii) In ail other cases when r ;> 3 :

sup \u(hy)^Cady.a\^Ch2r-\lnllh)(\u\2r.2fQy\\f\\oh (10.9)

11. THE AUBIN-BABUSKA PENALTY METHOD USING THE EXTRAPOLATION
METHOD OF KING AND THE BABUSKA LAGRANGE MULTIPLIER METHOD

On a domaiiTO with smooth boundary dQ let u be the solution of

— àu + u = ƒ in Q,
u = 0 on dQ.

In Aubin [1] and Babuska [4] a method was introduced for approximating
the solution of (11.1) in which the trial function need not satisfy the boundary
conditions and may be taken to be SH (Q). For this method the interior équations
are the same as (10.3) for the Neumann problem. The error estimâtes proved
in [1] or [4] do not show that method is optimal in H2~r (Q); i. e.s (10.4) was
not proved. In King [11] an extrapolation method for the penalty method
was given for which the estimate (10.4) remains valid. What is important to
us hère also is that the interior équations still remain to be (10.3) and the
subspaces Sh may be used. Hence in this case the estimate (10.5), (10.6),
(10.7), (10.8) and (10.9) are valid.

In Babuska [3] another method was introduced for approximating solutions
of (11.1). Hère use is made of another set of approximating functions on dQ
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which may be thought of as approximating du/ôn ou dQ. These are inde-
pendent of the trial functions on Cl which may be taken to be Sh. As before
the important point for our purpose is that the interior équations are exactly
the same as (10.3) and the estimate (10.4) holds. Hence the estimâtes (10.5),
(10.6), (10.7), (10.8) and (10.9) are valid.

12. ESTIMATES FOR THE GREEN'S FONCTION

For simplicity let us consider the Neumann problem of Section 10 and
let G (x, y) be the corresponding Green's function. Let Qo and Q'o be two
disjoint compact subdomains of Q. We shall consider G (x, y) for JCÊQ0

and y e Qr
0 ; i. e. separated points in the interior of Q. The function G, for y e Q'o

fixed satisfies

for q> G H1 (Q) n C° (Q). Now the Ritz-Galerkin Green's function corres-
ponding to the approximation in Section 10 satisfies

D(Gh(., y), <p) + (G A ( . , y), <p) = cpOO

for (p e Sh (Q). Again we assume r ^ 3. Now we want to estimate
G (x, y) — Gh(x, y) when x e Qo and ye£lf

0, and h is sufficiently small. For
fixed y e £l'o we have

., y)- G,(. , y), <p) + (G( . , y)- GA(., y\ q>) = 0

for ail q> e Sh (QJ, where Q1 is such that Qo
 cc= ^ i an (i ^ i n ^o ^s emPty-

Hence we may apply the estimate of Theorem 5 which yields

\G(x,y)-Gh(x,y)\OfÇÎOSC(hr\G(.ty)\riÇll

| | P i O | ) (12.1)

for p fixed but arbitrary. Clearly j G (., y) j p > n i is bounded.

In order to estimate the last term on right of (12.1) we observe that

y)-Gh(., y)\\-,.ai è i | |G ( . , y)- Gh(., y)\\\-,,a

Now for each veCp (Q) let w be defined by

— Aw + w — v in Q,

dn
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Then

|(G(. , y)-Gk(.9 y\ v)\ = \w(y)-wh(y)\9 (12.3)

where wh is just the Ritz-Galerkin approximation to w in Sh(Q). Furthermore
the estimate

|H|p + 2 ,^C|H|p ,n (12.4)

is valid. Hence we obtain from (12.2), (12.3) and (12.4) that

, ) -G à ( . , , ) | |_ , > 0 .SC sup l»Çy)»»OOL (12.5)

Now since .yefi^we may apply the interior estimate (12.5) to w — wh; i. e.:

where QJ, c c Q'x and n't n QÓ is empty.
Clearly then for /? = r —2+[tf/2] + l we obtain by means of Sobolev's

inequality
| « ; - u ; , | O j n ^ C / i r | | ^ | | p + 2 > n . (12.6)

Combining (12.5) and (12.6) we see that

This together with (12.6) yields

\G(x,y)-Gh(x,y)\^Ch' (12.7)

for x E Qo and y e Q'o.

13. BOUNDARY VALUE PROBLEMS WITH NON-SMOOTH DATA

As an application of the previous estimâtes we shall consider pro-
blems (10.1) and (10.2) in the case that the restriction off to Qo is assumed to
belong to Lt (Qo) and outside of Cï0, ƒ is smooth. Without loss of generality
in the following estimâtes we may assume that ƒ (x) = 0 for x e Q \ Q 0 . The
solution u to this problem is given by

u{x)=\ G(x, y)f(y)dy, a. e.
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where G is the Green's function introduced in Section 12. Now even thoughƒ
is not necessarily in L2 (O) the équations (10.3) make sensé and there exists a
unique solution uh e Sh (Q) to this problem. Furthermore it is given by

«*(*)= Gh(x,y)f(y)dy.

Now let Q'o be as in the previous section; i. e., Q'o c:c= Q and Qo n Q'o
is empty. Then we have

L t,y)-G„(x,

for x e Q'Q. By the estimate (12.7) we obtain immediately

\f(y)\dy.

This shows that away from the singularities of / the convergence rate in
the interior of Q is still as high as that of the smooth case. The analysis of
Section 12 and 13 is not restricted to the Neumann problem, Exactly the same
results hold for the two methods discussed in Section 11 applied to Dirichlet's
problem and many other situations. The two important points in our appli-
cations are that the interior équations (6.1) be satisfied and that good estimâtes
for négative norms of the error in a given approximation be available.
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