Estimates for spline projections
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 10 (1976) no. R2, p. 5-37
@article{M2AN_1976__10_2_5_0,
     author = {Bramble, J. H. and Schatz, A. H.},
     title = {Estimates for spline projections},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {10},
     number = {R2},
     year = {1976},
     pages = {5-37},
     zbl = {0343.65045},
     mrnumber = {436620},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1976__10_2_5_0}
}
Bramble, J. H.; Schatz, A. H. Estimates for spline projections. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 10 (1976) no. R2, pp. 5-37. http://www.numdam.org/item/M2AN_1976__10_2_5_0/

1. J.-P. Aubin, Approximation des problèmes aux limites non homogènes et régularité de la convergence, Calcolo, Vol. 6, 1969, pp. 117-139. | Zbl 0201.12601

2. I. Babuska, Approximation by Hill Functions, Comment. Math., Univ. Carolinae, Vol. 11, 1970, pp. 787-811. | MR 292309 | Zbl 0215.46404

3. I. Babuska, The Finite Element Method with Lagranian Multipliers, Numer. Math., vol. 20, 1973, pp. 179-192. | MR 359352 | Zbl 0258.65108

4. I. Babuska, The Finite Element Method with Penalty, Math. Comp., Vol. 27, 1973, pp. 221-228. | MR 351118 | Zbl 0299.65057

5. J. H. Bramble and J. A. Nitsche and A. H. Schatz, Maximum Norm Interior Estimates for Ritz Galerkin Methods, Math. Comp., vol. 29, 1976. | MR 398120 | Zbl 0316.65023

6. J. H. Bramble and J. E. Osborn, Rate of Convergence Estimates for Non-Selfadjoint Eigenvalue Approximations, Math. Comp., Vol. 27, 1973, pp. 525-549. | MR 366029 | Zbl 0305.65064

7. P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Die Grundlehren der math. Wissenschaften, Band 145, Springer-Verlag, New York, 1967. | MR 230022 | Zbl 0164.43702

8. C. De Boor and G. Fix, Spline Approximation by Quasi-Interpolants, J. Approximation Theory, vol. 8, 1973, pp. 19-45. | MR 340893 | Zbl 0279.41008

9. F. D. Guglielmo, Construction d'approximations des espaces de Sobolev sur des réseaux en simplexes, Calcolo, Vol. 6, 1969, pp. 279-331. | MR 433113 | Zbl 0198.46206

10. G. Fix and G. Strang, A Fourier Analysis of the Finite Element Method, Proc. CIME Conference, 1971, Cremonese, Rome (to appear). | MR 443377 | Zbl 0356.65096

11. J. T. King, New Error Bounds for the Penalty Method and Extrapolation, Numer. Math., vol. 23, 1974, pp. 153-165. | MR 400742 | Zbl 0272.65092

12. J. A. Nitsche and A. H. Schatz, On Local Approximation Properties of of L 2 -projection on Spline-subspaces, Applicable Analysis, Vol. 2, No. 2, July 1972. | Zbl 0239.41007

13. J. A. Nitsche, Interior Estimates for Ritz Galerkin Methods (preprint).

14. I. J. Schoenberg, Approximation with Special Emphasis on Spline Functions, Academic Press, New York, London, 1969. | MR 251408 | Zbl 0259.00010

15. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970. | MR 290095 | Zbl 0207.13501

16. A. Zygmund, Trigonometrical Series, Vol. 2, Cambridge, England, 1959.