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CONVERGENCE ANALYSIS
OF FINITE DIFFERENCE SCHEMES

FOR
SEMI-LINEAR INITIAL-VALUE PROBLEMS

by J. LÖFSTRÖM and Y. THOMÉE (*)

Summary. — The approximate solution by fini te différences of the initial-value problem for
a setni-Iinear équation cujct -- Pu -- f(x, u), with P - P (x, D) a linear partial differential
operator and x e Rd is considered. It is prove d that un der the appropriate existence, s moot h'
nçss and stability assumptions relative to L2, if the fini te différence scheme is accurate of order u
then the convergence is O {h»). The anal y sis is car ried out in the Besov space Bf2-1 and uses
interpolation of Banach spaces.

1. INTRODUCTION

In this paper we shall consider the approximate solution of the initial-value
problem

where P (x, D) is a linear partial differential operator of order M a n d / ( x , u)
is a sufficiently smooth function of .Y and u for u near the range of the solution
to be approximated. For t — nk, with k a small positive number and n a
non-negative integer, the approximation will be G\ i\ where Gk is a finite
différence operator of the form

Gk v = Ek v + k Fk i\

with Ek a linear operator consistent with the linear problem ( ƒ = 0), based
on mesh-size lu with kh~M = constant, and Fk chosen to accomodate the
nonlinearity ƒ

\i\ [1], [2], Ansorge, Hass and Geiger considered the case when the linear
initial-value problem is correctly posed and the linear finite différence ope-
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62 J. LÖFSTRÖM, V. THOMÉE

rator Ek is stable, both with respect to the maximum-norm. This would include
parabolic problems and scalar first order hyperbolic problems with maximum-
norm stable Ek. In contrast, their theory does not cover nontriviai hyperbolic
Systems and équations of Schrödinger type, since these are correctly posed
only in L2 and not in Lp for p =£ 2. Also, even for the scalar hyperbolic case
it does nor apply to operators Ek which, like for instance the Lax-WendrofT
operator, are stable in L2 but not in other Lp.

Our purpose here is therefore to treat the case when L2 is a more natural
basic space for the analysis than L^. It turns out, however, that L2 itself is
also not suitable if we want to make assumptions on ƒ (x, u) only near the
range of the exact solution, since closeness of two functions in L2 does not
imply pointwise closeness. For this reason it is convenient to carry out the
analysis in the Besov space B = Bd

2
/2>x which is Iargest the L2 based Besov

space which is contained in L^.
Our main resuit is (Theorem 5.1) that if the linear initial value problem

is strongly correctly posed in L2 (for définitions, cf. below) and if Gk is accurate
of order |i with Ek strongly L2 stable, we have, as long as the exact solution
exists (with ||. |l the norm in B),

\\Gn
kv-u(nk)\\= 0{h») as fe-»0,

provided that v has M+\i derivatives in B. For less smooth initial data a
correspondingly weaker convergence resuit holds (Theorem 5.2).

The proofs of our results will use concepts and techniques from the theory
of interpolation spaces. For basic material needed in this paper on such
spaces and in particular on Besov spaces, see e. g. [3], [4], [8] and [9].

We shall beging by discussing in Sections 2 and 3 the initial value problem
and its approximation in an abstract Banach space setting. In Sections 4 and 5
we then specify the Banach spaces to the concrete function spaces mentioned
above and show that under the appropriate hypotheses about the differential
équation and the différence operator, the assumptions of the results in
Sections 2 and 3 are satisfied. Sections 4 and 5 also contain some spécifie
examples of situations covered by our theory.

The simple case of the scalar hyperbolic équation

ôt dx

and a second order finite différence scheme based on the Lax-Wendroff
operator was presented in [12], The technique of working in Bd

2t
2>J to obtain

maximum-norm estimâtes for L2 stable operators was employed in [13] for
linear problems.
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DIFFERENCE SCHEMES FOR SEMI-LINEAR INITIAL-VALUE PROBLEM 6 3

2. THE ABSTRACT INITIAL-VALUE PROBLEM

Let B be a Banach space with norm ||. || and let P be the infinitésimal gene-
rator of a strongly continuous semi-group {E(t) : r ^ 0 } of bounded linear
operators on B. We shall study the approximate solution in B of the initial-value
problem

+ , u(0) = v. (2.1)
dt

Hère v is a fixed element in B and F is a (non-linear) operator defined in
s orne subset of B contai ning v.

Under the appropriate regularity assumptions on F it is clear that (2.1)
has a unique local solution (cf. e. g. [11]); we state and prove for completeness
and later référence:

LEMMA 2 . 1 : Assume that F is defined and Lipschitz continuous in a neigh-
borhood V of v. Then there is a positive number T such that (2.1) admits a
unique solution in [0, 7"].

Proof: We write (2.1) in the form

u(t) = E(t)v+ \ E(t-s)Fu(s)ds. (2.2)
J o

To prove existence, let 8 be so small that { w : || w~v || ^ 2 8 } is contained
in K, and let To be so small that \\E(t)v-v || ^ 8 for'o ^ t ^ To. Then V
contains the 8-neighborhood of {£ (t) v :0 ^ t ^ To}.

assu^nptions there^ar-econstaats-Pa, a0, y0 such that

PO||MM| f o r 0 ^ f ^ T 0 , weB, (2.3)

| || ^ a 0 || Wi-Wo || for w^ woeV, (2.4)

|| F w || ^ Y o for weV. (2.5)

We now choose T ^ To such that 0 < p0 y0 T ^ 8 and define recursively

Jo

Using (2.3)-(2.5) we find easily by induction that un (t) e V for 0 ^ t ^ T
and that

It follows that «„ (? ) converges uniformly on [0, T~\ to a function M (* ) with
values in V which satisfies (2.2).

août 1976,



64 I. LÖFSTRÖM, V. THOMÉE

The uniqueness follows in a standard manner from Grönwall's inequality.
From now on we shall assume that (2.1) [or (2.2)] has a solution

M (r ) = G (t ) v for 0 ^ ? ^ J (with 71 not necessarily small). We dénote
by V the range of this solution, U = {u(t) :Q ^ t S T} and by £75 the
closed 5-neighborhood of U. We shall consider 5 fixed in the sequel and
assume that F is defined on Us.

We shall need later to be abîe to solve (2.1) also with v replaced by w
close to v:

LEMMA 2 .2: Assume that F is Lipschitz continuous on £/5. Then there is a
neighborhood V of v such that for w e V, the dijferential équation in (2.1) has
a unique solution u (t) = G (t) w e Uôfor 0 ^ t ^ Twith ïï (0) = w. Moreover,
there is a positive constant coo such that

\\G{t)w-G{t)v\\^(ùo\\w-v\\ for weV, 0 ^ î ^ T. (2.6)

Proof: With (30 as in (2.3) with To replaced by Tand a0 as in (2.4) with V
replaced by Ufy, we let

co0 = (3oexp(PoCro T) and

Défi ni ng { un } by

we obtain

f'
J

J °
lt follows by induction

and, in particular, { u„ } <= £/6. We also find with y0 a bound for F in t/s,

so that un (t ) converges uniformly to u(t)e Uh which then obviously
solves (2.1) with v replaced by w. The estimate (2.6) now follows immediatly
from (2.7). The uniqueness is again an immédiate conséquence of Grönwall's
inequality.

We shall now turn to the regularity of the solutions which will be needed
in analyzing the concrete firüte différence schemes in Sections 4 and 5. For
this purpose, let A with norm |i. {A be a densely embedded subspace of B.
We shall see that under certain assumptions on E(t) and F relative to A,
G (t) w belongs to A for w in A and close to v. These assumptions are :

Revue Française a"Automatique, Informatique et Recherche Opérationnelle



DIFFERENCE SCHEMES FOR SEMI-L1NEAR INITIAL-VALUE PROBLEM 6 5

(A i) For w G A we have E (t) w G A for t ^ 0 and there is a constant
Px ^ 1 such that

| j £ ( O w j | ^ ^ P i H H U for w e A > O ^ t ^ T .

(Aii) For w e Us n A we have FweA and there is a constant YI such
that

j |Fu ; | j ^Yi ( |MU+l) for weUbnA.

(A iii) For any bounded subset w of A there is a constant a! such that

|| Fw1-Fw0\\A ^ <yl\\wl~w0\\A
 f o r ^o* w1eU6n W.

We then have:

LEMMA 2 .3: Assume that F is Lipschitz continuous on Us and that (Ai),
(A ii) and (A iii) hold. Then there is a neighborhood V of v in B {independent
of A) such that for w G V n A, G (t) w is defined and in Uà n A for 0 ^ t g T.
Moreover, there is a constant x such that

| | G ( 0 H > | | A ^ * ( | | M > | U + 1 ) forweVnA, O ^ f ^ T . (2.8)

Proof Let V be a neighborhood of v such that (cf. Lemma 2.2) w G V
implies that 2 0 ) = G(t)we t/a/3 for 0 ^ ? ̂  T. We shall prove that there
exists a positive To such that if u \t) e A for 0 ^ r ^ Tt ^ 7 then 2 (/ ) e A
for 0 g r ^ min (Tl + T0) J ) . This will prove that u (t ) e A for 0 ^ / ^ T.

Put T = Pi exp (Pi y t J ) . Using (Ai), (Aii) and GrönwalFs inequality
m (2.2) with v rcplaced by M? WC find at once as long as u~{t )e A,in parttcular
for 0 ^ / ^ Tl9 we have

| | 5 ( 0 | U + l ^ P i e x p C p j L Y i O C l l w l U + O ^ x ( | | i ü | U + l ) . ( 2 . 9 )

Let now u> be a fixed e lement in K n ^ and set

U == { M ( 0 = }

Since £/ c (/ô/3 and since t7 is compact we may détermine a positive To such
that E{t)ïïe U2b/2 for any ue Ü and 0 ^ / ^ Jo , and such that in addition
Po Yo To ^ S/3, where as in Lemma 2.1, Po and Yo a r e a stability constant
for £ (O in 0 £ r g T and a bound for F in t/8.

Set M?! = u{Tx) = G (Tt) w and define (cf. the proof of Lemma 2. l),

U B + 1 ( 0 = £ ( 0 H ; 1 + E(t~s)Fun(s)ds, uo(t) =
Jo

août 1976.



66 J. LÖFSTRÖM, V. THOMÉE

We flnd at once recursively that un (t) e U& n A for 0 ^ t ^ Tö and also
that

Jo
Hence, using also (2.9) we have

In particular, { un (t) } is uniformly bounded in A for 0 ^ t g To. Using
(A iii) we therefore obtain (with ax depending on w),

so that M„(0 converges uniformly in A on 0 ^ t <L r0. Clearly, since the
limit 5 ( 0 satisfies w (0) = u{Tx) = GÇTJw, we have

Together with (2.9) this complètes the proof.

3. THE ABSTRACT DISCRETIZED PROBLEM

We shall now consider the approximate solution of (2.1) defined for
t = nk by Gn

k v with k a small positive parameter and n a non-negative integer.
Here Gk is an operator approximating G (k) of the form

Gkw = Ekw + kFkw,

with Ek bounded linear and Fk defined on Uh. In applications Ek will approxi-
mate E (k) and Fk will be designed to handle the nonlinear operator F in (2.1).

We shall assume below that Ek is stable in B, so that there is a P ^ 1
such that

\\En
kw\\ ^ p | | w | j for weB, nk ^ T. (3.1)

Further, we shall assume that for k ^ k0, Fk is Lipschitz continuous on Us,
uniformly in k, so that

H^fc^i-^k^oll ^ O-IIMJX—U7O H for wO9w1eU&9 k<>k0. (3.2)

For w eU&, we define the local discretization error

Ekw = k~l(Gkw- G(k)w),

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



DIFFERENCE SCHEMES FOR SEMI-LINEAR ÏNITIAL-VALUE PROBLEM 67

and for w m the neighborhood V of Lemma 2.2, the global discretization
error

xk(w) = k X ||£fcG(nfc)to||.

We shall then be able to prove:

THEOREM 3 . 1 : Let u(t) = G(t)v be a solution of (2.1) for 0 ^ t ^ T

and assume in addition to (3.1) and (3.2) that lim xk (v) = 0. 77iew with

c0 = p exp (p G T)9 G"kv is defined and in Ub for nk ^ T, k ^ k1 if kt g k0

is so small that coxk(v) ^ ô for k ^ kt. Moreover,

\\Gn
kv-G(nk)v\\Scoxk(v).

Proof: We shall show by induction over n that Gn
k v is defined and in Us

for nk ^ T, k < k± and that with an = Ĝ  v-G(nk) v,

||an||^Pexp(pan/c)Tfc(i0. (3.3)

Since this is trivially valid for n = 0, assume now that we have already
proved the conclusion for ail integers ^ n and that (n+l)k fg T. Then in
particular, we have G"kve Us so that Ĝ  + 1 v is defined. We may then write,
with bn defined by the second equality,

. G (nk) v = Ek an + kbn,

or, since a0 = 0, by (3.1),

llfln.tl|j ^ k y n ^ r ^ j i l ^ pfc S H^ii^
Now (3.2) irnplies

W W ^ a ' ^ a j W f o r j ^ ^ ,

so that

This clearly establishes (3.3) with n replaced by n+1. By the choice of k1

we may also conclude that Gn
k
+i ue Ud, which complètes the proof.

In applications, if the initial-values are known to have a certain regularity,
it is often possible to dérive précise estimâtes for the discretization errors
and hence of the right hand side in (3.3) in terms of k. In the following
theorem we shall state such an estimate in which for later use (the proof
of Theorem 3.3) we consider initial-values also in a neighborhood of v, We
shall assume then that there exists a neighborhood Vo contained in the

août 1976.



6 8 J. LOFSTROM, V. THOMÉE

neighborhood V of Lemma 2,2, such that if A is a densely embedded subspace
of B, then there are positive numbers c1 and v such that

|| for weVonA, k ^ k0, t + k^T. (3.4)

Recall from Lemma 2.3 that under the assumptions (Ai), (A ii), (A iii), if
w e A and is close to v we have G (t) w e A for 0 ^ t ^ Tand the estimate (2.8)
holds. This will be used in the vérification of (3.4) for the concrete différence
schemes in Sections 4 and 5.

THEOREM 3.2: Assume that F is Lipschitz continuous on Uh and that Gk

satisfies (3.1), (3.2) and (3.4). Then there is a neighborhood V of v in B, a
positive constant c2 and for each we V n A a positive k2 such that for k ^ k2

and t = nk fg T, G (t) w and Gn
k w are defined and in Uè and

\\Glw-G(nk)w\\^c2k\\\w\\A + l). (3.5)

For k2 we may take any number with k2 ^ k0 and c2k
v
2C\\ w | |^+ 1) ̂  8/2.

Proof: By Lemma 2.2 we may choose V c VQ such that for w e V, G (t ) w
is defined and in Um for 0 ^ t S T. Setting Ü = {G(t)w :0 £ t ^ T}

we find for all such w that Üh}2 a Us. Moreover, for w e V we have by (3.4),

lt hence follows from Theorem 3.1 that Gn
k w is defined and in Ub/2 <= Us

for k ^ k2, nk ^ T and that (3.5) holds, which proves the theorem.
In particular, if v e A we may apply Theorem 3.2 to w = v and obtain

then a 0 (A:v) global error estimate for small k.

We shall conclude this section by deriving a convergence estimate for initial
data in a space which is intermediate between B and A. In order to define
such spaces we introducé for any pair of Banach spaces Bo and Bx with
Bj c 5 0 the functional

t, v; Bo, Bx) = inf (||t> —u?||Bo + f H u>||Bl) for MJ6B0, t > 0.

For 0 < 0 < 1 the Banach space (Bo, B^^ is then defined by the norm

We shall prove:

THEOREM 3.3: Under the assumptions of Theorem 3.2, let ve AQ = (B, A)Qoo

for some 6 with 0 < 0 < 1. Then there are constants c3 and k3 such that Gn
k v

is defined and in U6 for nk ^ K, k ^ k3 and

\\Gn
kv-G(nk)v\\^c3k

6\ (3.6)

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



DIFFERENCE SCHEMES FOR SEMI-LINEAR INITIAL-VALUE PROBLEM 69

As a preliminary step we prove:

LEMMA 3 .1 : Under the assumptions (3.1) and (3.2) on Gk, let k ^ k0,
nk S T and CÛ = p exp (pa T). Then if'G( v9 G{ w e Uhforj < n we have

\\Glv-Gn
kw\\ ^(Ù\\V-W\\.

Proof: We shall prave by induction over j that with dj = G^v — Gf w,

\\dj\\ g pexp(pa7k) | |ü -w| | for j ^ n. (3.7)

Since this estimate clearly holds for j = 0, assume it has been proved for
j < m < n. We have with e,, defined by the second equality,

and hence
m - l

j=o
It follows that

j=0

from which (3.7) now easily follows for j = m by the induction assumption.
This proves the lemma.

Proof of Theorem 3.3: Let coo> co and c2 be as in Lemmas 2.2 and 3.1 and
Theorem 3.2 and let V be the intersection of the neighborhoods in Lemma 2.2
and Theorem 3.2. We shall then prove the theorem with

c3 = 2 max (co0 + ÜJ, C2)J^\V f|70 4- L) andT k3 ^ k0

such that

{w : | !w;-ï; | |^2^ e3V | | i ;! | j 4 9}c:l/ and c3 /ce
3
v S 6/2.

The result clearly holds for n = 0. Assume it has already been established
for integers less than n. In particular, then Gn

k~
l v e Us so that Gn

k v is defined.
By définition, we may choose we A (depending on k) such that

\ \ \ \ \\\\ v\ B,A)^2k*v\\v\\Ae. (3.8)

Then, for k ^ kz we have w e K a n d c2 A:v(|| w \\A+ 1) ^ 8/2. We conclude
by Theorem 3.2 that G (nk) w and G" u; are defined and in Us and (3.5)
holds. This yields, using also Lemmas 2.2 and 3.1,

août 1976.



7 0 J. LÖFSTRÖM, V. THOMÉE

Using now (3.8) and the définition of c$, we get

\\Glv-G(nk)v\\ ^ m a x ( c ö o + (u, c2)(\\v-w\\ + kv\\w\\A + kv) ^ c3k*\

which complètes the proof.

4. THE CONCRETE INITIAL-VALUE PROLLEM

From now our Banach spaces will consist of functions on Rd with values
in Rd'. More precisely, B will consist of such functions in the Besov space BdJ2'l.
For arbitrary positive s, Bs

2>
l may be defined, with any N > s, by

J (4.1)
o

where with Ahtu(x) = w (x + h) — w (x),
ö?(ïü, / ) = sup | | A ? I Ü | | L 2 .

1*1 &

In addi t ion to B = BdJ2>1 (in which the norm will still be denoted ||.l|)
we shall use Bm = B™ + di2>1 with m a non-negative integer. A norm in Bm,
equivalent t o the one defined by (4.1) is then

H L - I llö"«4
I « I âm

We shall later also have reason to use the space 2?*'°°, defined with N > s
by

| | | | ? (4.2)| | | |
t>0

Our choice of the space B^2*1 is motivated by the fact that this is the largest
Besov space Bs

2>
q based on L2 which is contained in L ro; we have the sharp

Sobolev type inequality (cf. e. g. [3], Theorem 2.4):

| |w | | LQO g x | | iv\\ for all weB. (4.3)

As a resuit of this, we have:

LEMMA AA: For any m (and d' = 1 sothat point wise multiplication is defined),
Bm is a Banach algebra, and for given l and m there is a constant C such that

| | " > o « > i " - w i \ \ m S c Y._ II ^ o I L il ^ i I L ••• I I ^ I U - ( 4 - 4 )

Proof: It is enough to prove (4.4) for / = 1 and using Leibniz' formula
we may restrict ourselves to the case m = 0. Let N > d and recall the discrete
Leibniz formula

A%(wowï)(x)=

Revue Française d*Automatique, Informatique et Recherche Opérationnelle



DIFFERENCE SCHEMES FOR SEMI-LINEAR INITIAL-VALTJE PROBLEM 7 1

Using (4.3) we find at once that the terms with j ^ d/2 (and hence
N—j > d/2) are bounded in L2 by

and similarly, the terms with j > d/2 are bounded by C (ùJ
2 (w1, h) jl w0 il

Hence

y>d/2

and the resuit now follows by the définition of B.
We shall now consider the concrete initial-value problem

u + f(x9 u), f ( 4

\

where P — P (x, D) is a linear differential operator of order M, the d' x J '
matrix coefficients of which have bounded continuous derivatives of all orders,
and where ƒ is a given function on Rd x Rd'. We shall assume that (4.5) admits
a solution u = u (x, i ) in B for 0 ^ t ^ 7, and we shall be concerned with
proving in this concrete situation the conclusions of Lemmas 2.2 and 2.3
(with a suitable A). Setting

Fu(x) = f{x,u(x))9 (4.6)

our efforts will mainly be dévotes to the vérification of the assumptions on
the operator F made m Section 27

We shall need to assume below that ƒ satisfies the following regularity
assumptions :

(/i) DlDlf(x9Ç) are bounded continuous on RdxRd' for ail a, p;

(fiï) Da
xDlf(x,Ç) are bounded in L2(R

d), uniformly for Z,eRd\ when
a / 0.

Since we shall be interested in the behavior of F only in a neighborhood Ub

in B of the given solution w, it is in fact suflficient to assume ƒ defined and
satisfying the regularity conditions on Rd x Q where Q is some neighborhood
injRd'oftheclosureof { u(x, t) : x e Rd

9 0 ^ t S T}. For, if || w-v(t)\] ^ 5
for some t, we conclude by (4.3) that | w (x) — u (x, t ) | ^ x5 so that for
8 small, u; (x) is in Q for ail x E Rd. On the other hand, a function ƒ satisfying
the regularity assumptions on RdxQ may be extended to Rd x iK without
loss of these properties. Notive that ( /ü) is always satisfied if/ is independent
of x, or more generally, i f / i s independent of x outside some compact set

août 1976



72 J. LÖFSTRÖM, V. THOMÉE

in Rd. In each individual result below, only a finite number of the derivatives
of ƒ will enter; for convenience we refrain from keeping track of the exact
number.

In addition to ( ƒ i), ( ƒ ii) we shall demand that

(ƒ iii) f(x,0)eL2(R
d).

For ƒ independent of x, this requirement reduces to /(O) = 0. Notice that
since the functions in B are small for large | x j we have 0 e Us for any ô > 0.

We now turn to the technical work. We shall first prove in Lemma 4.3
below that the condition (A ii) of Section 2 is satisfied with A = B m. As a
preliminary step we prove an estimate for Fw 'm the Soboiev space W% {cf [10]).
Recall that the norm in WN

2 is defined by

I * I ^

LEMMA 4.2: Let F be defined by (4.6) with f satisfying ( / i ) , (/ii). Then
for any positive N there is a constant C such that for | a | = N9 we

Proof: The derivatives of order N of f{x. w {x)) are Iinear combinations of
erms of the form s

, w) with | oc | = N, (4.7)

and
(lTxDlf)(xtw)llDl'w%l9 (4.8)

where w = {w1, . . . , wdl) and

| o t | < N , l ^ | p | ^ N - | a | , 1=1, . . . , | P | , |

Z | Y i | = N - | a | , (4.9)

yz * 0, 1 ̂  x, ̂  d'. )

The terms of the form (4.7) are clearly bounded in L2 by (/ii). In order
to estimate a term of the form (4.8) we shall apply the inequality (see [10]) :

l l I I ^ ^ C l I ^ l l i ^ H ^ i l U , where 0 < 9 = W ^ i, q = 2

M 0
with

M = N-jct|, Y = y /, 9 = ^ ! l
N-|a| 0,

Revue Française d'Automatique, Informatique ei Recherche Opérationnelle



DIFFERENCE SCHEMES FOR SEMI-LINEAR INITIAL-VALUE PROBLEM 7 3

Noticing that £ 37* ~ 2"1 w e n e n c e obtain, using first Hölder's inequality
and (fi), that (4.8) is majorized in L2-norm by

l i l l l i l l l l l ^ l H l M r
In view of (4.9) this proves the Lemma.

LEMMA 4.3: Assume that f satisfies (fi), (fii) and (fin) and let W be a
bounded set in B. Then for any nonnegative m there is a constant C such that

\\Fw\\m£C{\\w\\m + l) for weWnBm.

Proof: Let N > m + d/2 and set K(t9w;L2, W**). Then the norm in Bm

is equivalent to

fI o
and it is therefore sufficient to prove

]| Fw\\Ll£ C ( | | M ; | | L 2 + 1 ) for we W (4.10)
and

K(t, Fw) ^ C(K(t, w) + t) for we WnBm, 0 ^ t ^ 1. (4.11)

By (/iii), (4.10) follows immediately from

In order to prove (4.11) we recail that it is known (cf. [10]) that there is
a constant C independent off and w such that if we take

w (x) = ^~l (exp ( - /1 q \N) wu where w = & w,

then for 0 g / ^ 1,

\\w~Û\\L2 + t\\û\\w»SCK(t,w). (4.12)

Since exp (-1 Ç \N) is a multiplier on & Lt (cf. e. g. [7]) we have in addition

It follows by (4.10) and Lemma 4.2 that

Hence, using (fi) and (4.12) we obtain

K(t, Fw)S. \\Ftv-Fw\\Lz-\-t\\Fw\\ws

which complètes the proof.
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We shall now prove in Lemma 4.5 below the Lipschitz continuity properties
of the operator F required in the theory of Setcion 2. Again we start with a
technical Lemma:

LEMMA 4 .4: Assume that f satisfies (fï) and (/ i i) and let W be a hounded
set in B, Then for any non-negative m there is a constant C such that

for

WOG WnBm, wieBm.

Proof: The function f(x, £>)— f(x, 0) satisfies (fï), (fii) and (fin) and
hence by Lemmas 4.1 and 4.3,

| | ( / ( . , «>o)- / ( - , O))W l | jm ;SC £ \\f(.,wo)-f{.,0)\\mo\\w1\\mi
mo + m i = m

^C I (IKIk+DlKIU,-

Since obviously in view of ( ƒ i),

the result follows

LEMMA 4 .5 : Assume that f satisfies (fï), ( / i i) and ( / iü) , and let m be non-
negative, Then for any bounded set W in Bm there is a constant C such that

\\Fwl-FwQ\\m S C\\w1-w0\\m for wÖJ wxe W. (4.13)

Proof: Since ƒ is defined everywhere on Rd x Rd' it is no restriction to assume
that W is convex. With w0, w^ e W we then have ws — wo + s (wi~w0)e W
for 0 ^ s S 1 and we may write

Fwi(x)~Fw0(x)= -f(x,ws(x))ds
Jo\ds

, ws (x)\ wx (x) - w0 (x) > ds. (4.14)
o

Applying Lemma 4.4 to grad^/we obtain since W is bounded in Bm,

| | <g radç / ( . , ws)9 w 1-u; o>| | l l l^C( | | !ü s | | l ) I + l ) | |H; 1 -uïo | |ma C \\ w±-w0 \\m ,

which together with (4.14) proves (4.13) and hence the Lemma.

Notice that Lemma 4.5 contains both the Lipschitz continuity of F on UB

required in Lemma 2.2 (m = 0) and the condition (A iii) (m > 0).
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We have thus proved that the assumptions on F in Lemmas 2.2 and 2.3
are satisüed for the concrete initial-value problem (4.5). For the purpose of
satisfying also the assumption (A i) on E (t ) we now demand that the
initial-value problem for the linear équation,

^ = P ( x , D)u, (4.15)
ot

be strongly correctly posed in L2, that is that for each N there is a constant C
such that

c I M k " for o g t g r .
Choosing N = 0 and some Â  > m + d/2, it follows at once by interpolation
that

\ \ E { t ) w \ \ m ^ C \ \ w \ \ m
 f o r O^1^ T '

which is (A i) for A = Bm. We may hence conclude from Lemmas 2.2 and 2 . 3 :

LEMMA 4.6 ' Assume that the initial-value problem (4.15) is strongly correct-
ly posed in L2 and that f satisfies (ƒ i), ( ƒ ii) and (ƒ iii). Then there is a neigh-
borhood V ofv in. B such that for we K, (4.5) has a unique solution G (t) w e Ub

for 0 ^ t ^ T. If in addition weBm then G(t)we Bm for 0 <L t ^ T.
Moreover there are constants coo and xm such that

| | ^ © 0 | | t i > - u | | for weV,

| | io | |m+l) for WeVnB™

For solutions which are smooth with respect to x we may use the differential
équation to détermine corresponding differentiability properties with respect
to t. In Section 5 we shall need the following bounds for derivatives in /
(cf Segal [11]):

LEMMA 4.7: Under the assumptions of Lemma 4.6, let j be a non-negative
integer. Then there is a constant C such that for w e V n B ->M (with V as in
Lemma 4.6), G(t)w is j times continuously differentiable with respect to t
in [0, 71], and

\ \ D l
t G ( t ) w \ \ £ C { \ \ w \ \ J M + l) f o r Ï S j .

Proof: We shall prove by induction over y' that for any non-negative ƒ and m,
under the appropriate smoothness assumption,

\\DÎG{t)w\\n£C(\\G(t)w\\m + jM+l). (4.16)

Taking m = 0 the desired resuit then follows by Lemma 4.6.
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Clearly (4.16) holds for j — 0. In order to carry out the step fromy toj-f 1,
we first notice that by our assumptions on the Mth order differential operator
p = p (x, D), we have for any N > 0,

and hence by interpolation

\\Pw\\mèC\\w\\m+M. ( 4 . 1 7 )

D i f f e r e n t i a t i n g t h e d i f f e r e n t i a l é q u a t i o n f o r u ( t ) = G ( t ) w w e o b t a i n

DJ
t
+1u(t) = P D / M ( 0 + Di

By (4.17) and the induction assumption we have

It will therefore be sufficient to prove

\\D{Fu(t)\\m^C(\\u(t)\\m+JM + iy (4.18)

For this purpose we notice that Dt
jf(x, u (x, t )) is a linear combination of

expressions of the form

1=1

with 1 S | P | = b S j \ liji = j\jt T̂  0, 1 S K1 ^ d\ By Lemmas 4.4 (applied
to D^f9 noticing that ü is in Uh and hence bounded in B) and 4.1, the Bm

norm of each term can be estimated by a multiple of

E (||5(0|k + i)nil^lS(0||«, withi
l — l

Hence by the induction hypothesis, each term in (4.19) can be estimated by
a multiple of

), where j 0 = 0.

We now use the convexity inequality

l l a j j ^ c i H i 1 - 6 ! ! ^ , o < e = H ^ i , (4.20)
and obtain since u is bounded in B,

m + j M
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Using aiso the fact that 1 + xe g 2 {1 +x)9 for x è 0, 0 g 9 < 1 and Z, 0f = 1,
we conclude

l i | U
1=0

which concludes the proof of (4.18) and thus of (4.16).
When applying the gênerai convergence results of Section 3 to différence

schemes for spécifie initiai-value problems, it will be necessary to convert
known resuîts on these problems to the present framework. A result in this
direction is the following lemma which shows that is the linear problem (4.15)
is strongly correctly posed and F has certain local boundedness and Lipschitz
continuity properties, then the solution with initial data in WN

2 remains if WN
2

(and hence in B if N > d/2) for as long as it is bounded in Lœ. Recall that the
step from B to Bm was already taken in Lemma 2.3.

LEMMA 4.8: Let N > d/2, T > 0, ans assume that there is a constant P ^ 1
such that

r i i H k » for o g ^ r , (4.21)
and that for arbitrary positive a and y, there are ct (0) and c2 (y) such that

\\FW1-FW0\\WN<>C1(G)\\W1~W0\\WN for jj^H^N ^ a, j = 0, 1,

for weW?, \\w\\L„£y. (4.22)

Let v e W^ and assume that there is a âclassical solution u(t) with
|J u (t) jj£œ S Jo on [ 0 , r ] . Then u(t)eW» on [0, T ] .

Troof: We notice ftrsT that for as long a subintërval oF^OTT] as
n {t ) ~ G (t ) v is in W f we have

| | G ( O ü | | ^ ^ a o = -l+(P||ü||Hrr + l)exp(pc2(Yo)r). (4.23)

For, by the intégral form (2.2) of the initial-value problem we obtain
using (4.21) and (4.22) and the boundedness of u (t ),

\\G(t)v\\wS£ P|Mk» + Pc2(Yo) f\\\G(s)v\\w9
Jo

from which (4.23) follows at once. We find easily, as in the proof of Lemma 2.1,
that with <J0 given by (4.23), there is a To such that the initial-value problem
has a solution G (t) w in W\ on [0, To] for ail w with jj w ̂ WN <; CT0. Since

v \\w$ S a0 it follows that G (t) v is in W% for 0 S t S To and by (4.23)
we have || G(T0) v \\w* g cr0. Hence G(T0)v may be taken as new initial-
values so that we can conclude G (t ) v e W N

2 on [0, 2 TQ~\ and by continuation
of this procedure on [0, 7*].
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We conclude this section by some examples.

Example 1: Consider for d = 1 the équation

— = — + pu p + 1 , p Const. ^ 0 , r = 1,2, . . . (4.24)
5f dx

The exact solution of the initial-value problem is then

w(x, 0 = ü(

For p < 0 and r even the solution is bounded for all positive t and hence T
is arbitrary. For p > 0 or p > 0 and r odd we may choose any T such that
T < To (r p || v !!£„)"x. In both cases we conclude that for v e W \ we have
that w(x, f) belongs to PF* (and hence to 5 ) for r e [0, T ]. (It is in fact
easy to see that ue Bm if »e5 m ) .

Example 2: Consider for d arbitrary the symmetrie hyperbolic system
(ueRd):

f- = £ ^(x) - + ƒ (x, u), ^(x)* = AAx). (4.25)

The'linear problem is strongly correctly posed in L2 and hence, under the
appropriate regularity conditions on/, the corresponding initial-value problem
admits a solution in [0, T ] for some T > 0 by Lemma 2.1, which by
Lemma 2.3 is smooth provided the initial data are smooth.

In some cases the solution continues to exist for all positive t. For example,
let d = 3 and consider the scalar second order problem

ÔOt

* ( , ) p, ^ ( , ) |
dt

Introducing y, dy/dt and dy/dxj,j = \, 2, 3, as new variables, this problem
can be reduced in a standard manner to an initial-value problem for a symme-
trie hyperbolic System (with df = 5). It was proved by Jörgens ([5], cf. Satz 2
and Hilfssatz 1) for a class of équations containing (4.26) that for any positive T
and sufficiently smooth (p and \|/ there exists à classical solution of (4.26)
in [0, T ] with y9 dy/dt, ôy/ôxj uniformly bounded. This implies the existence
of a bounded classical solution u (t) of the corresponding symmetrie hyper-
bolic system. Since the assumptions of Lemma 4.8 are satisfied for this
system (with N = 2) we conclude that if the initial data v = (<p, \|/, grad cp)
of this solution are in W\, then u (t) also belongs to W \ (and in particular
to B) on [0, T~\.
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Example 3; Consider the Schrödinger type équation

- = i l -r-2+/(*,u). (4-27)
d* j - i 3xj

Taking real and imaginary parts we obtain a System (with d' = 2) for which
the linear initial-value problem is strongly correctly posed in L2. The semi-
linear System therefore has a solution in B at least locally in t. Again, it may
be that the solution continues to exist for ail positive t. Such a case is the
équation {d — 1):

du 32u | l2
- U M.

Hère it is easy to see (cf. [6], Chapter 1, Section 10) that for arbitrary T > 0
the solution is bounded in W l

2 and hence in B on [0, !T], provided this is
the case initially.

5. THE CONCRETE DISCRETE PROBLEM

We shall now consider the approximation of the concrete initial-value
problem discussed in Section 4 by means of a finite différence operator of
the form

Gkw = Ekw + kFkw.

Here we shall assume that Ek is a linear explicit finite différence operator,

k
Ekw(x) = Vaa(x, h)w(x — ah) with --— = X = Const.,

a h

which is strongiy stable in L2 so that for each T and N,

\\En
kw\\w»^C\\w\\w» for nk^T. (5.1)

The finitely many coefficient matrices att (x, h) are assumed to have bounded
continuous derivatives of all orders for (x, h) e Rd x (0, 1] say. Further, Fkv
will be an expression of the form

Fkw{x) = v|/(x, h, w(x — ax /i), . . ., u;(x — OLjh)),

for some finite set {a,-} c Zd. We shall assume that the function
y\f = \|/ (x, /z, ̂ (1), . . . , £,(J)) is defined on Rd x (0,1 ] x i^ ' x . . . x Rd' with values
in Rd' and that

(\|/ i) Dx D\D\^.. .D\J
iJt v|/ are bounded in all variables:

(\|/ii) for a ^ o these derivatives are bounded'in L2(R
d), uniformly in

hy ^(1), . . . , ̂ (jy Notice that as before, if we work in t/s, the behavior of v(/
for large values of the ÇO) is immaterial.
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Our first purpose is to show that under the above assumptions, the ope-
rator Gk satisfies the assumptions (3.1) and (3.2) made on Gk in Section 3
with respect to the concrete space B

LEMMA 5 .1 : Assume that Ek is strongly stable in L2 and that \|/ satisfies (v|/ i)
and (\|/ ii). Then Ek is stable in B = BdJ2>1 and Fk is Lipschitz continuous in £/5,
uniformly for small k.

Proof: The stability of Ek in B follows at once by linear interpolation
from (5.1) with N = 0 and N = [djl'] + 1, say. In order to prove the Lipschitz
continuity of Fki it suffices, in the same way as in the proof of Lemma 4.5,
to show that for all first order derivatives v|/(j.} k = dty/d£,U) k of \|/, we have

w0 || ) || wx ||.

The proof of this fact follows as in Lemmas 4.2 through 4.4 (with m = 0)
from (v|/ i) and (\|/ ii).

In order to apply the gênerai convergence results of Section 3, it remains
to discuss the discretization errors. We say that Gk is accurate of order u
if for smooth solutions u of the differential équation (4.5).

û(t + k)-Gkû(t) = k0{h») as h -> 0. (5.2)

This relation is required to hold only formally, at each x e Rd, so that as the
left side is developed in a Taylor series with respect to h (recalling that k = X hM)
and using the differential équation to replace derivatives in / by derivatives
in x, then the appropriate number of terms cancel. In order to obtain an esti-
mate for the local truncation error in B we shall then need to estimate the
remainder term in this Taylor series.

We first consider the remainder in the Taylor expansion of
w,

j=o j \ Jo m!

Using Lemma 4.7 we obtain

J ^ | | i i i k j | ( )
o m!

With m — \i this estimate is of the order of the right side in (5.2) if M = 1
In order to obtain the appropriate estimate for M > 1 we notice that since

km

Rmu(t) = Rm-iU(t)-- DTu(tl
ml
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we also have

\\RmÙ(t)\\£Ck'" s u p \\DTÙ(l)\\ûCkm(\\w\\mM + l ) .

The following Lemma will now provide an estimate for

weBp with mM < p ^{m + l)M.

In the proof we shall again apply some interpolation theory. In particular,
in addition to the interpolation space C#0>^i)e,oo defined in Section 3, we
shall use the space (Bo, BJQ x with norm

f , w; Bo, BJdt.

LEMMA 5.2: Assume that the linear problem (4.15) is strongly correctly
posed in L2 and that {fi), ( ƒ ii) and ( ƒ iii) hold. Let V be the neighborhood
in Lemmas 4.6 and4.7. Then there is a neighborhood Vo ofv in B, with Vo c V
and such that if p = mM+qy with m a non-negative integer and 0 < q < M,
then there is a constant C such that

\\RmG{t)w\\^CkplM{\\w\\p + l) for weVonBp and t + k^T.

Proof: Let Cj (B ) dénote the space of j times continuously differentiable
functions U = U (t) on [0, T ] with values in B and set

H | | ) sup | j l /
lâJ [0,T]

With^this-^aetation, the rcmainder Rm is aHïnear-operator on^Cm (B ) and
we have for t + k g T,

We hence obtain by linear interpolation theory, with

M

Let e be so small that K<2E) = { w : || w—v || < 2 £ } is contained in V.
The Lemma will follow (with Vo = V^) if we can prove that for w e F(e> n Bp

9

| | - 9
( B ) g C ( | | « ; | | l , + l). (5.3)

Now recall the inequality

H V | | c - ( B ) ^ «-Ij U ||cO(B) II U \\c*» + HB)9
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which is equivalent to the inclusion (C° (B)9 C
m+1 (B))m/(m+1)l c Cm (B).

On the other hand, the réitération theorem of interpolation theory states that
with T] = (

In view of the définition of this latter interpolation space, it suffices, in
order to prove (5.3), to show that

K(s9G(t)w;C°(B)9C
m+1{B))£Cs\\\w\\p+l). (5.4)

For this purpose, let ve V^ n BP and choose w1eBim + 1)M so that

Then for s S s o w u"n so s u c n t n a t ^o ̂ 3 (|| w IIP + ^ = E w e

wl e V t2e) c Kso that by Lemmas 4.6 and 4.7,

i- G{t)w\\ S CWwt-wW,

|| || Cdju?! ||(m+i)M+lX 7 ^

For these s we therefore obtain

K(s,G(t)w;C°(B), Çm

On the other hand, for s ^ ^0,

which complètes the proof of (5.4).
Returning to the discretization error we shall now prove:

LEMMA 5.3: Under the assumptions of Lemma 5.2 about the înitial-value
problem, let Gk be accurate of order \i with v|/ satisfying (\|/ i)> (\|/ ii). Then
with p = M + \i and Vo the neighborhood of Lemma 5.2 the re is a constant C
such that for small k, t + k ^ T,

O H i ^ l | I H I p > for
 o

Proof: We write

p~M-h\i = mM + q with 0 < q ̂  M.

Setting ü(t) = G (t) w we have

G(/c)S(O= t k~Dtu{t) + Rm,
j=o jl
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where by Lemma 5.2,

Letting further a (h) be defined by

a(h) = Eku = £ a a ( x , h)u(x~-ah) with u = u(t)9

we have

y=o jl
where

Since obviously by our assumptions on the coefficients of EK,

\W"\s)UC\\~u\\p,

we find by Lemma 4.6,

p \ \ \ \ \ \ p \\\\ t \ \ \ \ l i ) . ( 5 . 6 )

Setting also

y(h) = Fku(x) = y\i(x, h, « ( x - a j / ï ) , . . . , tt(x-a,fc)),

we have

with

Using the properties (\]z i), (\(/ ii) we now find by the same line of reasoning
as in Section 4 {cf. in particular the expression for the derivatives in the proofs
of Lemmas 4.2 and 4.7) that for small s,

\w»(s)\\zc( n ||2|L+O.
Using the convexity inequality (4.20) and Lemma 4.6, recalling that u is
bounded in B, we conclude for 0 ^ s ^ h,

so that

||GM | |£Cfc'(|M| |1+l). (5.7)
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By the accuracy assumption, the polynomials in h will have to cancel in such a
fashion that

The Lemma therefore follows at once from (5.3), (5.6) and (5.7).
As an immédiate conséquence of Lemmas 5.1 and 5.3 we now find that the

assumptions on Gk of Theorem 3.2 are satisfied. Using also Lemma 4.6 we
may hence conclude:

THEOREM 5 .1 : Assume that the initial-value problem (4.5) has a solution
u(t) = G (t) v in B for 0 S t ^ T, that the linear problem (4.15) is strongly
correctly posed in L2, and that f satisfies (ƒ i), ( / i i ) , ( /üi) . Let Gk = Ek + kFk

be a finit e différence approximation to (4.5) which is accurate of order \i9

with Ek strongly stable in L2 and Fk satisfying (\|/ i), (\|/ ii), Then if
v e ^ M + M = gM + ix + d/2t i fhere are constants C and k0 such that

\\Gn
kv- G(nk)v|| ^ Ch» for k£k0, nk^T.

In order to state a resuit for less regular initial data, we recall that the Besov
space B5^™ defined in (4.2) can also be described as an interpolation space,
namely

ffi °° = (BT \ Bs^ X œi where 0 = i Z f l , s0 < s < s,.

With s0 = d/2, sx = M + ix + d/2, Theorem 3.3 therefore at once yields the
following interpolated result:

THEOREM 5.2: Under the assumptions of Theorem 5.1, let 0 < s <
Then if v e B^di2> °° there are constants C and k0 such that

\\G"kv-G(nk)v\\ S C/ÎS M / ( M + M ) for k ^ fc0, nk ^ T.

Given a finite différence operator Ek of accuracy \i for the linear problem
it is easy to détermine Fk in such a way that Gk is also accurate of order u.
For, if Mm < M+j i ^ M (m+ 1), we obtain using the differential équation,

t D{t
as k->Ó,

where Â <m) is a non-linear function of u and certain of its derivatives. We have
for instance, with ƒ = f(x, u (x)),

) u = f,
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Since by assumption Ek is accurate of order u, we have

f PJ(t) E
7 = 0 j \

as / t - • 0 ,

and we hence find that in order to achieve (5.2) we can construct Fk by replac-
ing derivatives by différence quotients in N^m> u in such a way that formally,

Fku (t) = N{
k
m) u(t)+O(/zM) as h -> 0.

For example, for the symmetrie hyperbolic system (4.25), the linear, first
order accurate, strongly L2 stable Friedrichs operator

w i t h X < ( d m a x j | Aj ||L ) ~ \
j

we have M = u = m = 1 so that we may take Fk u = A^̂ 11 M = ƒ (x, M).
Consider also the scalar eqtation (4.24) and let Ek be the Lax-WendrofY

operator

Eku(x)= l(\2 + \)u(x + h) + (l-\2)u(x)+ iQ,2-k)u(x-h)i

with X ^ l .

Here A f = l , j i = w = 2, P = 3/2x, / ( x , w) = p wr+1 and we find,

+ u +
Ôx 2 J

To preserve second accuracy we now only have to approximate ôur+l/dx
for flrst order accuracy, because of the factor k in front of this term. The
special case p = r = 1 was treated in detail in [12].

For the Schrödinger équation (4.21), we have M = 2 and so in order to
retain second order accuracy with a second order Ek, we may always choose
Fku = N["u =f(x9u).
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