Some asymptotic error estimates for finite element approximation of minimal surfaces
RAIRO. Analyse numérique, Tome 11 (1977) no. 2, pp. 181-196.
@article{M2AN_1977__11_2_181_0,
     author = {Rannacher, Rolf},
     title = {Some asymptotic error estimates for finite element approximation of minimal surfaces},
     journal = {RAIRO. Analyse num\'erique},
     pages = {181--196},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {11},
     number = {2},
     year = {1977},
     mrnumber = {445866},
     zbl = {0356.35034},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1977__11_2_181_0/}
}
TY  - JOUR
AU  - Rannacher, Rolf
TI  - Some asymptotic error estimates for finite element approximation of minimal surfaces
JO  - RAIRO. Analyse numérique
PY  - 1977
SP  - 181
EP  - 196
VL  - 11
IS  - 2
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://archive.numdam.org/item/M2AN_1977__11_2_181_0/
LA  - en
ID  - M2AN_1977__11_2_181_0
ER  - 
%0 Journal Article
%A Rannacher, Rolf
%T Some asymptotic error estimates for finite element approximation of minimal surfaces
%J RAIRO. Analyse numérique
%D 1977
%P 181-196
%V 11
%N 2
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://archive.numdam.org/item/M2AN_1977__11_2_181_0/
%G en
%F M2AN_1977__11_2_181_0
Rannacher, Rolf. Some asymptotic error estimates for finite element approximation of minimal surfaces. RAIRO. Analyse numérique, Tome 11 (1977) no. 2, pp. 181-196. http://archive.numdam.org/item/M2AN_1977__11_2_181_0/

1. J. H. Bramble, S. R. Hilbert, Bounds on a class of linear functionals with applications to Hermite interpolation, Numer. Math., Vol. 16, 1971, pp. 362-369. | MR | Zbl

2. J. Frehse Eine a-priori-Abschätzung zur Methode der finiten Elemente in der numerischen Variationsrechnung.In : Numerische Behandlung von Variations-und Steuerungsproblem, Tagungsband, Bonn. Math. Schr., Vol. 77, 1975, pp. 115-126. | MR | Zbl

3. J. Frehse, Eine gleichmaige asymptotische Fehlerabschätzung zur Methode der finiten Elemente bei quasilinearen Randwertproblemen. In : Theory of Nonlinear Operators. Constructive Aspects, Tagungsband der Akademie der Wissenschaften, Berlin (DDR), 1976. | Zbl

4 J Frehse, R Rannacher, Eine L1-Fehlerabschatzung fur diskrete Grundlosungen in der Methode der finiten Elemente In Finite Elemente, Tagungsband, Bonn Math Schr, Vol 89, 1976, pp 92-114 | Zbl

5 C Johnson, V Thomee, Error estimates for a finite element approximation of a minimal surface, Math Comp , Vol 29, 1975, pp 343-349 | MR | Zbl

6 H D Mittelmann, On pointwise estimates for a finite element solution of nonlinear boundary value problems To appear | MR | Zbl

7 C B Morrey, Multiple intégrals in the calculus of variations Springer Berlm-Heidelberg-New York, 1966 | MR | Zbl

8 F Natterer, Uber die punktweise Konvergenz finiter Elemente Numer Math,Vol 25 1975 pp 67-77 | MR | Zbl

9J Necas, Les méthodes directes en théorie des équations elliptiques Masson, Paris, 1967

10 J Nitsche, Lineare Spline-Funktionen und die Methode von Ritz fur elliptische Randweirtaufgaben Arch Rational Mech Anal, Vol 36, 1970, pp 348-355 | MR | Zbl

11 J Nitsche, L -convergence of finite element approximation 2 Conference on Finite Eléments, Rennes (France), 1975 | MR

12 R Rannacher, Zur L -Konvergenz linearer finiter Elemente Math Z, Vol 149, 1976 pp 69-77 | MR | Zbl

13 R Scott, Optimal Lx-estimates Jot the finite element method on irregular meshes Math Comp, Vol 30, 1976 | MR | Zbl