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THE FIIMITE ELEMENT METHOD
FOR ILL-POSED PROBLEMS (1)

by Frank NATTERER (2)

Communiqué par P G CIARLET

Summary — The Tikhonov regularized solution is approximated by the fimte element method
A relation beween the regularization parameter and the mesh size is given which implies that the
regularized solution and its fimte element approximation are of the same order of accuracy
Applications are made to the Radon transform and numencal results are given for an intégral
équation ofthefirst kind

1. INTRODUCTION

Assume that E, F are real inner product spaces and A : E -> F is a linear
injective map. If f e range (A), then there is a unique y e E such that

Ay = f. (1.1)

If A"1 is unbounded, then the problem : Given ƒ find y, is called ill-posed.
The reason for this is the following : If instead of ƒ only some fz with
II ƒ ~~ yêllf ^ £ *s available, then the solution yt of Ayz = ft (it at all existent)
need not be close to y. But even if ƒ is known exactly, we still have the pro-
blem that any discrete version of A is badly iîl-conditioned. One of the standard
remedies is to use more information on y. Let V £ E be a Hubert space, the
embedding V -+ E being compact. If we know that y e F, then we can
replace yt by the regularized solution yt obtained by minimizing

Js(u)=\\Au- fz\\
2
F + s2\\u\\2

v (1.2)

(*) Manuscrit reçu le 7 juillet 1976, révision reçue le 3 janvier 1977
(2) Angewandte Mathematik und Informatik, Fachbereich 10 der Umversitat der Saarlandes

Umversitat des Saarlandes, Saarbrucken
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272 F. NATTERER

in V. It was shown by Tikhonov [10] and Philipps [8] that ye -> y in E if
s -> 0 ; see also Ribière [9], For a more recent exposition, see Céa [2].

As E is of infinité dimension, ye has to be computed by some discretîzation
procedure yielding an approximation y£h to j>e, /2 being the discretization
parameter designed to tend to zero. It seems that little attention has been
paid to estimâtes on \\yzh — y\\E. Of course h has to be related to s somehow
if yEh is to be as accurate as y£.

This paper is intended to give a relation of this kind for the finite element
method. This relation reads h = 0(e1 /M) where \x dépends on the finite éléments
and on the ill-posedness of problem (1.1). If problem (1.1) gets more ili-posed
JLL increases. Thus we corne to a somewhat surprising conclusion : The more
ill-posed the problem is, the coarser the mesh should be chosen.

In § 2, we dérive an estimate on \\y — yz\\E similar to the one given by
Franklin [3]. In § 3 we give the basic estimate on \\y£h — y\\E. In § 4 we apply
our resuit to the numerical inversion of the Radon transform. In § 5 we give
numerical results for an intégral équation of the first kind.

2. AN ERROR ESTIMATE FOR THE REGULARIZED SOLUTION

According to Lions' lemma, (Th. 16.4 of [5]) there is a function C such that

V 5 > 0 V w e F Huit < 5\\u\\v + C$)\\Au\\F. (2.1)

We assume that C is continuous and non-increasing. Then the function
8 -> 8/C(S) has an inverse y with y(e) -> 0 if s -> 0. A typical example is
E = L2 (fi) where Q £ Rr\ V = rr (fi), the Sobolev space of order k > 0,
and ||^w||F equivalent on V to the norm of H~l{0) = (^'(fi))f where / > 0.
It follows from standard interpolation inequalities (see Aziz-Babuska [1],
p. 25) that

C(8) = p5 ' / / k , Le. y (e) = {e/fif/(l+k) (2.2)

with P independent of E.

THEOREM 1 : If yeV^ then

Proof : Following Tikhonov [10] we start out from Jz{yz) ^ Jz(y\
from

il A„ _ r\\2 ^L o2 H „ 112 ^ || A„ f\\2 L ^2 | | v | | 2

1^= il/ - m + ^
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It follows that

\\2v, (2.3)
\\y\\2

r).

The last inequality implies

M U ~ y)l = \\Ayt - ƒ | | , ^ \\Ayt - ƒ.1, + ||ƒ, - ƒ«,
< fi { (1 + IM|£)1/2 + 1 }. (2.4)

By (2.1) we get from (2.3), (2.4)

b ~ JSIIE < 8 II y - yj\y + C(5) ||^ (y - y£)\\F

< 5 { IMIv + (1 + W * } + eC(S) { (1

The theorem follows by choosing 5 = eC(S).

3. THE FINITE ELEMENT APPROXIMATION TO THE REGULARIZED SOLUTION

Now let E = L2 (Q)> where Q is some région in the euclidean «-space.
We put V = H* (Q), the Sobolev space of order k > 0. We assume that there
are constants l > 0, Cx such that

VweK \\Au\\F < Ct | |M|U-, ( Q ) , (3.1)

where //'"'(Q) is the dual space of Hl{Q).
This means that we require a certain amount of ill-posedness, the amount

being measured by the number /.
The finite element space 5£k(Q) we use is supposed to be a (t, &)-regular

system which satisfies the inverse assumption (see Aziz-Babuska [1], chapt. 4).
From theorem 4.1.5 of Aziz-Babuska [1] we conclude that there is a map
Ih : //*(Q) - Sj;k(Q) such that

bh4Hnn)2\\\\v,
Vw e l (3.2)

\\ThU\\V ^ C2 \\U\\V

where C2 is independent of h and

It is this approximation property of Sl'k (Q) with respect to négative norms
which will play the essential role in the proof of theorem 2 below.

Naturally, the finite element approximation yeh to ye is defined by mini-
mizing Jz (u) in Sltk (Q). Now we are able to state the main resuit of our paper.

THEOREM 2 : Let y e V. Assume that there is a constant C3 independent
of e, h such that hfl < C3s. Then there is a constant C4, independent on y, h, s,

vol 11, n°."ï, 1977
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such that
2
v)

ll2y(E).

Proof : Starting out from J£ (yj s£ Jz (ƒ„ƒ), we get from (3.1 ), || ƒ - / J ^ e,
(3.2) and from A" «S C3e

+ S* |JÜ* < MV - ÜI +
- y) + f - f.\î + z
-y)\\F+\\f-MF

(C, \\lhy - y\\H-(a) + s)2 + e2
 | 4 J , | | 2

where C5 independent on y, h, £. As in the proof of theorem 1, it follows that

\\yj2v < cj(i + \\y\\2),

Using again Lions' inequality (2.1) exactly in the same way as in the proof
of theorem 1 yields the desired estimate.

4. APPLICATION TO THE RADON TRANSFORM

Let Q be a bounded domain in R2. The Radon transform of yzL2(Çl) is
defined to be

Hère, s e R1, 0 < § < 2n, and as ^ is the Lebesgue measure on the straight
line x1 cos c|) + x2 sin <|) = s, We tacitly assume y to be extended to the
whole of R2 by putting y — 0 outside of Q.

Let Z £ i?3 be the cylinder { (cos <|>9 sin <|>, 5) : 0 ^ <|> < 2TI, S e i?1 }.
In L2 (Z) we introducé the norm

ç2nr

It follows from the work of Ludwig [6] that A may be viewed as a map from
L2 (Q) into L2 (Z). Moreover, we have.

LEMMA 4 .1 : 77Ï£ norms | | ^ | | L 2 ( 2) , ||^||iï-1/J(ni are equivalent on L2(Q).

R A.l.R O Analyse Numcrique/Numerical Analysis
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Proof : Following Ludwig [6]. p. 51 we write
/» + 00

(Ay)(s, 4>) = e*sr y(r cos <|>, r sin <|>) dr (4.1)
J - o o

where

is the Fourier transform of y. Applying Parseval's relation to (4.1 ) we obtain
/• + 00 /• + 00

((Ay)(s9 <t>))2 ds = 2n \y(r cos <|>, r sin c())|2 dr.
J — oo J — oooo

Integrating with respect to <|> we get

2 Tt /• + 00

|y(r cos 4>, r sin=2«n
JO J-c

= 2K ! l^l"1!^)!2^. (4.2)

Using the norm

f
in H~ll2{R2\ it follows from (4.2) and supp (y) e Q that | | ^ j | | L 2 ( Z ) and
IMIff-1/3^2) a r e equivalent. Here we used the fact that the norms ||y\\H-^(R^
and IIJ'IIH-./I ( f i )are equivalent. This follows from the extension theorem 2.3.2
and the définition 2.3.4 of the norm in H112 of [1 ]. Thus the lemma is proved.

Now it is easy to apply the results of our paper to the Radon transform :
We put E = L2{Q), F=L2(Z\ V - H1 (Q). From (2.2) we get that
C(6) = 0(S"1 /2) in (2.1), hence y (E) = 0(e2/3). Thus, theorem 1 states that

Let Q b e a square région and (7^) a regular séquence of triangulations of Q
i.e. there is C ^ 1 such that each triangle of Th contains a bail of radius h/C
ans is contained in a bail of radius Ch. Then

S2*1 (O) = {ueC(Q):u linear in each triangle of Th }

is a (2,1)-regular system. Theorem 2 tells us that it suffices to use a mesh
size h = 0(e2/3) in order to obtain the estimate

vol . I I . n° 3. 1977



276 F. NATTERER

It is doubtful (at best!) wether this method can compete with older ones
as described e.g. in Guenther et al. [4], by the following reasons : It is not
clear wether an efficient implementation is possible, and, more seriously,
the assumption that y e H1 (Q) is not realistic for many application e.g. in
computerized tomography. Nevertheless, it seems that presently this finite
element method is the only one the convergence of which is on a sound theore-
tical basis.

5. APPLICATION TO INTEGRAL EQUATIONS OF THE FIRST KIND

Let E = L2 (a. b\ F = L2 (c. d) and for y e E

r"
(Ay)(x) = K(x, t)y(t) dt

Ja

where Ke C00([a, b~] x [c, d]\ Then the norm \\Ay\\F is weaker then the
norm of H~l (a, b) for any finite /. Thus if V = H* (a, b\k > 0, then C(S) -• oo
in (2.1) for 5 -> 0 faster than any power of S, i.e. y (e) -> 0 for 8 -• 0 slower
than any power of 2. Consequently, the accuracy of.ye guaranteed by theo-
rem 1 is very poor. This result explains the difficulties one encounters in the
numerical solution of the Fredholm intégral équation of the first kind A y = ƒ

One might guess that a very accurate discretization procedure is needed to
deal with a problem which is ill-posed that much. Theorem 2 tells us that
the opposite is true. If we use for Sj+1>fc splines of class C*"1 and of degree k
on a uniform rnesh with mesh size /z, then, according to theorem 2,
h = e1/2(fc + 0 is an appropriate choice for h. As / can be chosen arbitrarily
large, we can keep h nearly constant if e -> 0.

To see what this means in practice we solved

exp ( - 5(x - tf)y(t) dt = f (x), 0 ^ x < 1

where y(t) = exp (— /). We considered the case k = 1.
The right hand side ƒ was given exactly. The numerical results are given in

table 1. Smaller values of A than those noted in table 1 gave no essential decrease
or even a slight increase of the error. Thus the optimal value of h was always
in [1, 1/4] while s varied from 10"2 to 10"5. This clearly coincides with our
theory.

As a second example we solved the problem
i

(sinh {(t - l)x))2y(t) dt = ƒ (x), 0 < x ^ 3
Jo

R.A.I.R.O. Analyse Numérique/Numerical Analysis
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which arises in finding the dielectric profile of a slab (see [5], p. 148). The
exact solution was taken to be y (t) = exp (— t). The computation, the results
of which are shown in table 2, was carried out with k = 2.

TABLE 1

8

10"2

10"3

10~4

10"5

8

10"1

io-2

10"3

10'*

h
1
1/2
1/3
1/4

1
1/2
1/3
1/4

1
1/2
1/3
1/4

1
1/2
1/3
1/4

TABLE

\\y

2

h

1
1/2
1/3

1
1/2
1/3

1
1/2
1/3
1
1/2
1/3

Aft! L,(0,1)

0.31
0.31
0.31
0.31

0.31
0.30
0.30
0.30

0.31
0.085
0.075
0.072

0.31
0.065
0.035
0.046

0.14
0.14
0.14
0.061
0.061
0.061

0.048
0.048
0.047

0.0048
0.011
0.0067

Again we see that for all realistic values of e, a very modest step size suf-
fices. The strange behavior of the error for e = 10~4 is related to the vanishing
of K(x, t) at / = 1 which is responsible for very large errors of yt near t = 1.
For h = 1, yEh is a quadratic on [0,1 ] approximating yB in an L2-sence. Thus yeh

is not likely to exhibit the same growth of error near t = 1 as does yt. For
h = 1/2, 1/3, yeh is a spline which can be fitted much easier to yB even for
t close to 1. This argument is supported by the numerical results which give an
error of - 0.0181, 0.0358 and 0.0251 for yzh (1) if h = 1, 1/2, 1/3, respectively.
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