The finite element method for ill-posed problems
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 11 (1977) no. 3, p. 271-278
@article{M2AN_1977__11_3_271_0,
     author = {Natterer, Frank},
     title = {The finite element method for ill-posed problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {11},
     number = {3},
     year = {1977},
     pages = {271-278},
     zbl = {0369.65012},
     mrnumber = {519587},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1977__11_3_271_0}
}
Natterer, Frank. The finite element method for ill-posed problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 11 (1977) no. 3, pp. 271-278. http://www.numdam.org/item/M2AN_1977__11_3_271_0/

1. A. K. Aziz and I. Babuska, Survey Lectures on the Mathematical Foundations of the Finite Element Method. In : Aziz, A. K. (ed.) : The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, Academic Press, 1972. | MR 421106 | Zbl 0268.65052

2. I. Cea, Optimisation, Théorie et Algorithmes. Dunod, Paris, 1971. | MR 298892 | Zbl 0211.17402

3. J. N. Franklin. On Tikhonov's Method for Ill-Posed Problems. Math. Comp. 28. 1974, p. 889-907 | MR 375817 | Zbl 0297.65053

4. B. Guenther, E. K. Killian, K. T. Smith and S. L. Wagner, Reconstruction of objects form Radiographs and the Location of Brain Tumors. Proc. at. Acad. Sci. USA. 71, 1974 p. 4884-4886. | MR 354065

5. L. L. Lions et E. Magnes, Problème avec limites non homogènes et applications, vol. 1. Dunod, Paris, 1968. | Zbl 0165.10801

6. D. Ludwig, The Radon Transform on Euclidean Space. Comm. Pure Applied Math. 19, 1966, 49-81. | MR 190652 | Zbl 0134.11305

7. R. Mittra and C. A. Klein, Stability and Convergence of Moment Method Solutions. In : MITTRA, R. (ed) : Numerical and Asymptotic Techniques in Electromagnetics, Spinger, 1975.

8. D. L. Philipps. A Technique for the Numerical Solution of Certain Integral Equations ofthe First Kind. J. Ass. Comp. Mach. 9, 1962, p. 84-97. | MR 134481 | Zbl 0108.29902

9. G. Ribière, Régularisation d'opérateurs. R.I.R.O., 1, 1967, p. 57-79. | Numdam | MR 224267 | Zbl 0184.37003

10. A. N. Tikhonov, The Regularization of Incorrectly Posed Problems. Dokl. Akad. Nauk SSSR, 153, 1963, p. 42-52. | Zbl 0183.11601