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WHAT SHOULD BE A RATE OF CONVERGENCE? (1)

Ylastimil PTAK (2)

Communiqué par F. ROBERT

Abstract. — An aiiempt to set up a method for estimating convergence of itérative processes
using inequalities of the type

where (Ù is a "small" fonction as deflned by the author. This method is compared with the classical
notion of a rate of convergence ; for convex fonctions (ù inequalities using the distance of xn from
the solution and those using the distance of two consécutive steps are shown to be equivalent. Some
advantages of this new approach are pointed out.

1. HEURISTICS

The classical notion of the order of convergence or rate of convergence
which reputedly goes back to the last century is defined as follows. Given an
itérative process which yields a séquence xn of éléments of a complete metric
space (E, d) converging to an element x e E we say that the convergence is of
order p if there exists a constant a such that

Clearly it is immaterial whether we require this for all n or only asymptotically.
Let us point out two difficultés which seem to arise if this point of view is
adopted.

1° If p > 1 then the above inequality contains a certain amount of infor-
mation about the process ; the information, however, is more of a qualitative
nature since it relates quantities which we are not able to measure at any
finite stage of the process. The obvious meaning of the above inequality seems
to consist rather in the fact that, at each stage of the process, the following
step of the itération yields a significant improvement of the estimate.

(1) Text of a lecture (unpublished) given at the Dublin Conference on Numexicat Analysis.
August 1976. Manuscrit reçu le 10 novembre 1976.

(2) Vlastimil Ptâk, Ceskoslovenska Akademie Ved, Matematicky Ustav, Praha, Tchécos-
lovaquie.
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280 V. PTAK

2° Theoretical considérations enable us, in many cases, to establish an
inequality of the above type for certain constants a and p ; however, usually
this is only possible if we assume n to be larger than a certain bound. We
might want, however, to stop the process before this bound is reached — in
this case the inequality cannot be used. Of course, it is possible to extend
the validity of the estimate to ail n by making a sufficiently large — this may
invalidate its practical applicability for the initial steps.

It seems therefore reasonable to look for another method of estimating the
convergence of itérative processes, one which would satisfy the following
requirements.

1° it should relate quantities which may be measured or estimated during
the actual process

2° it should describe accurately in particular the initial stage of the process,
not only its asymptotic behaviour since, after all, we are interested in keeping
the number of steps necessary to obtain a good estimate as low as possible.

We would like to call the attention of the specialists to a method proposed
by the author with the aim of satisfying the above postulâtes.

It is obvious that wa cannot expect to have an adequate description of both
the beginning and the tail end of the process by any formula as simple as the
one we discussed above. In our opinion, a description which fits the whole
process, not only an asymptotic one, is only possible by means of suitable
functions, not just numbers.

We therefore propose a method based on looking for positive functions œ
(defined for smaii positive arguments) which relate two consécutive incréments
of the process by an inequality of the following type

By allowing a larger class of functions than just those of the type t -* OLÎP

we have a better chance of getting a closer fit of the estimâtes even at the
beginning of the process.

At the same time this approach measures the rate of convergence at finite
stages of the process using only data available at that particular stage of the
process; in fact, instead of comparing the two unknown quantities d(xn, x)
and d{xn+li x) it is based on the relation between d(x„y xn_x) and d(xn+ {, xn).

Suppose we have a séquence of inequalities

for k — 1, 2, . . . (where (oü) stands for the y' — th itération of the function co)
00

and that the series £ ®U)(d(xn+u *„)) is convergent. Such a séquence of ine-
o

qualities may be deduced from the above inequality if co is an iïicreasmg
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function. Then the séquence xn,xn + 1, . . . is a fondamental séquence and,
the space (£", d) being complete, converges to a limit x for which

QO

d(xn> *) < à{xn + u xn) + d(xn + 2, xn+1) + ... ^ £ ®U)(d(xn + i> *„))
0

As an example, let us mention the rate of convergence of Newton's process
recently established by the author. There we have

v ' 2{t2 + rf)1/2

where d is a positive constant depending on the data of the problem. A closer
inspection of this formula shows that, for very small f9 the function assumes

t2

approximately the form whereas, for large /, the summand t2 predomi-
2d !

nates in the denominator to that the function is approximatively linear, — t.

Since co relates the consécutive steps of Newton's process by the inequality
d(xn+1,xn) ^(ù(d(xn,xn_l)) this shows flrst that, asymptotically — in
other words for small d(xn,xn_x) — the next incrément is approximately

{d(xn, xn_x))2. This phenomenon is usually described by saying that the

convergence is quadratic.

However, in the initial stages of the process d(xn,xn_1)is still large so that ©
is almost linear. Since it may be shown that the estimâtes for Newton's process
process based on co are sharp at each step, it follows that accurate estimâtes
valid for the whole process — including the initial steps — cannot be based on
any simple quadratic monomial.

Having explained the motivation, let us pass now to précise formulations.

(1.1) DÉFINITION : Let T be an interval of the form T = {t;0 < t < tö}
for some positive t0. A rate convergence on T is a function a) defined on Twith
the folîowing properties

1. o maps T into itself
2. for each te T series t + ©(*) +co(2) (/)+ . . . is convergent.

We use the abbreviation co^ for the n-th iterate of the function co, so that
(ù(2)(t) — <ù((ù{t)) and so on. The sum of the above series will be denoted
by a. The function a satisfies the folîowing functional équation

a ( r ) - / = a ( « D ( 0 ) ;
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282 V. PTAK

one of the conséquences of this fact is the possibility of recovenng œ if a is
given. Indeed,

This notion plays a fundamental rôle in the method of non-discrete mathe-
matical induction, a new approach to itérative existence theorems.

The method of nondiscrete mathematical induction, inaugurated by the
author in [3] and [4], was intended to give a gênerai, abstract model for itéra-
tive constructions in mathematical analysis and numerical analysis. It turned
out that such a model may be based on a simple resuit about families of sets
which represents a quantitative refinement of the closed graph theorem. We
call this result the Induction Theorem.

Let us restate hère for the convenience of the reader the induction theorem
and explain the notation. Given a metric space (E, d) with distance function d,
a point x e E and a positive number r, we dénote by U(x, r) the open spherical
neighbourhood of x with radius r, U(x, r) = { y e E] d(yy x) < r }. Similarly,
if M <= E, we dénote by U(M, r) the set of all y e E for which d(y, M) < r.
If we are given, for each sufficiently small positive r, a set A (r) c E, we define
the limit A (0) of the family A (. ) as follows

A(O) = n
s>0

Now we may state the Induction Theorem.

(1.2) THEOREM : Let (E, d) be a complete metric space, let T be an interval
{t;0 < t < t0} and GD a rate of convergence on T. For each t e Tlet Z(t) be a
subset ofE\ dénote by Z(0) the limit of the family Z ( . ). Suppose that

for each t e T. Then

Z(t)czU{Z(0la(t))

for each t e T.
The theorem is closely related to the closed graph theorem in functional

analysis which is nothing more than a limit case of the induction theorem. The
proof of the induction theorem is very simple and, moreover, is analogous to
the proof of the closed graph theorem. The proof may be found in [4] where
the relation^ of these two theorems is discussed or in the Gatlinburg Lecture [5]
where the principles governing its applications are expounded.

The method of nondiscrete mathematical induction has been applied suc-
cessfully to obtain improvements of sélection theorems [4], transitivity
theorems in the theory of C*-algebras [4], [10], factorization theorems in

R.A.Ï.R.O. Analyse Numérique/Numerical Analysis



WHATSHOULD BE A RATE OF CONVERGENCE? 283

Banach algebras [3], [1] and existence theorems in the theory of partial
differential équations [9], [2].

In the Gatlinburg Lecture [5] the method of nondiscrete mathematical
induction was ülustrated by means of the example of an itération splitting off
an eigenvalue of an almost decomposable operator. Also, this method makes
it possible to obtain estimâtes sharp at each step for the case of Newton's
process [6].

The most obvious example of a rate of convergence is that of a linear contrac-
tion, the function m(ï) = at with 0 < a < 1 on the whole positive axis.
Since (oin)(t) = ant, explicit formulas forG(/) and an(t) are immédiate.

Some existence problème require, however, in a natural manner, more
complicated rates of convergence.

Let us mention two examples.

t2

2(x2

rate of convergence on the whole positive axis. In the author's paper [6] it is
shown that function measures the convergence of Newton's process. The
corresponding a-function is computed in [6] and the finite sums an in [8],

(1.4) If y and P are positive numbers such that y2> 4P then

Y t + (( + 0 2 4 p ) 1 / 2

t
(1.3) The function m(t) = — where d is a positive number in a

2(x2 + dy12

is a rate of convergence on the whole positive axis. It has been used in [5] to
obtain result on the spectrum of an almost decomposable operator. The
correspondingG-function is computed in [5] and the finite sumso„ in [7].

2. CONVEX RATES OF CONVERGENCE

Let us turn now to the problem of comparing this new method of measuring
convergence with the classical notion described at the beginning.

The new method is based on comparing consécutive terms in the séquence

while the classical one compares consécutive terms in the séquence

d(x„, x)

It is thus natural to ask whether estimâtes using consécutive distances
d(x„, xn+1) imply similar estimâtes for the distances d(xn, x). More precisely,
i(en n+l stands for an estimate ofd(xn+1,xn) and en for an estimate of d(xn, x)
we can ask whether estimâtes of the form en+x n + 2 ^ o (en n+ï ) imply estimâtes
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of the classical type en+1 ^ co(en). We in tend to show that this is indeed so at
least in the case where to convex.

To see that, suppose we have a séquence xn for which the estimate

<*(*»+!>*..) < <*>{<t(Xn>Xn-l))

holds. Hence

d(xn9x) ^ d(xn + lixn) + d(xn + 2,xn+1) + . . .

< Z <*>(k>(d(xH + 1, *„)) = a(d(xn+l9 x j ) .
o

Here we have used the fact that co is nondecreassing ; this is a simple consé-
quence of the convexity of co.

Similarly, d(xn_1, x) ^ o((o(d(xn_l9xn))) ; it follows that the estimâtes

and

satisfy the inequalities en+1 ^ o ' (<o (eBt(I+ j )).
To obtain the désirable estimate en+1 ^ co (en) it would be sufficient to have

the inequality a o co ^ œ o a since this yields the following estimâtes

This heuristic ressoning should be sufficient to explain the importance of
the inequality a o co ^ co o a. We now proceed to a formai proof of this ine-
quality for convex rates of convergence.

(2.1) Suppose co is a rate of convergence on the interval T. If co is convex,
then

coo a > <2o o

Proof : We intend to show that co (c (t)) > a (co (t)) for each t e T such that
a(t) again belongs to T. First of all, we make the following observation.

IfO < x ^ y e Tthen

(ù(y)x ^ (ù(x)y,

This is an immédiate conséquence of the convexity of co. We include a formai
proof although the inequality is evident from a simple picture. Consider a
third point z, 0 < z < x. We have then

— x x — z \ y — x , v x — z , v
z + 3; < ^ ©(z) + ( )

y — z j y - z w3 < ( ) y)
y — z y — zj y - z w y — z v /
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Since Û>(Z) tends to zero for z -• 0, it follows from the above inequality that

(û(x) < ~(ù(y); this establishes the inequality ®(y)x ^ (o(x)y. In particular,

it follows that co is nondecreasing.
Suppose now that t e T is such that a (/) e T. Since co(n) (t) < a (t) for

n = 0, 1, 2, . . . it follows from the above inequality that

for ail « = 0, 1, 2, . . . . Upon summing these inequalities and dividing by
o(t) we obtain the desired inequality.

It is possible to obtain a somewhat sharper inequality.

(2.2) Let © b e a rate of convergence on the interval T. If co is convex then,
for each natural number n (and each t e T for which an (t) e T)

Proof : For n = 1 this inequality is an immédiate conséquence of the ine-
quality

(ù(t + Q)(Q) > <ù(t)
t + G>(t) " t

Now suppose that n is a natural number and that the n — th inequality holds.
We have thus

At the same time,

Using (2) and (ln) we obtain

in other words

cofo.nK^ ^a,-1(a>)a,+1.
At the same time

©(a>+1)<D- ^ o > " + 1 a n + 1 (3)
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286 V. PTAK

Upon adding these two inequalities we obtain

This complètes the induction.

The preceding discussion seems to indicate that convex rates of convergence
form a natural generalization of the classical notion.

It should be noted though that convexity is not a conséquence of the condi-
tions in Définition (1.1). In fact, there exist even concave rates of convergence.
However, at this early stage of our investigations, we do not know of any
problem in analysis which would require in a natural manner the use of a non-
convex rate of convergence.
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